dc.contributor.author |
Wang, X |
en |
dc.contributor.author |
Sideratos, G |
en |
dc.contributor.author |
Hatziargyriou, N |
en |
dc.contributor.author |
Tsoukalas, L |
en |
dc.date.accessioned |
2014-03-01T02:49:41Z |
|
dc.date.available |
2014-03-01T02:49:41Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34689 |
|
dc.subject |
Artificial Neural Network |
en |
dc.subject |
Linear Regression |
en |
dc.subject |
Mathematical Model |
en |
dc.subject |
Power Market |
en |
dc.subject |
Power System Operation |
en |
dc.subject |
Process Improvement |
en |
dc.subject |
Random Process |
en |
dc.subject |
Wind Power |
en |
dc.subject |
Wind Speed |
en |
dc.title |
Wind speed forecasting for power system operational planning |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/PMAPS.2004.242254 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/PMAPS.2004.242254 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Wind power is a necessary addition to traditional power market. Wind power prediction therefore is necessary because of the intermittence nature of wind. A lot of studies have been performed to accurately predict wind power and local wind speed. In this paper, an artificial neural network based predictor is described to predict wind speed, which can be mathematically modeled as |
en |
heal.journalName |
International Conference on Probabilistic Methods Applied to Power Systems |
en |
dc.identifier.doi |
10.1109/PMAPS.2004.242254 |
en |