HEAL DSpace

Bayesian network approach for gas path fault diagnosis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Romessis, C en
dc.contributor.author Mathioudakis, K en
dc.date.accessioned 2014-03-01T02:49:43Z
dc.date.available 2014-03-01T02:49:43Z
dc.date.issued 2004 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34704
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-10244242606&partnerID=40&md5=10c5ed6c06ffdda6f104dd9b8ba30118 en
dc.subject.other Benchmarking en
dc.subject.other Compressors en
dc.subject.other Gas turbines en
dc.subject.other Information analysis en
dc.subject.other Jet engines en
dc.subject.other Probability density function en
dc.subject.other Problem solving en
dc.subject.other Vectors en
dc.subject.other Bayesian networks en
dc.subject.other Gas path fault diagnosis en
dc.subject.other High pressure compressors (HPC) en
dc.subject.other Gas fuel analysis en
dc.title Bayesian network approach for gas path fault diagnosis en
heal.type conferenceItem en
heal.publicationDate 2004 en
heal.abstract A method for solving the gas path analysis problem of jet engine diagnostics based on a probabilistic approach is presented. The method is materialized through the use of a Bayesian Belief Network (BBN). Building a BBN for gas turbine performance fault diagnosis requires information of a stochastic nature expressing the probability of whether a series of events occurred or not. This information can be extracted by a deterministic model and does not depend on hard to find flight data of different faulty operations of the engine. The diagnostic problem and the overall diagnostic procedure are first described. A detailed description of the way the diagnostic procedure is set-up, with focus on building the BBN from an engine performance model, follows. The case of a turbofan engine is used to evaluate the effectiveness of the method. Several simulated and benchmark fault case scenarios have been considered for this reason. The examined cases demonstrate that the proposed BBN-based diagnostic method composes a powerful tool. This work also shows that building a diagnostic tool, based on information provided by an engine performance model, is feasible and can be efficient as well. en
heal.journalName Proceedings of the ASME Turbo Expo 2004 en
dc.identifier.volume 2 en
dc.identifier.spage 691 en
dc.identifier.epage 699 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής