dc.contributor.author |
Dewallef, P |
en |
dc.contributor.author |
Romessis, C |
en |
dc.contributor.author |
Leonard, O |
en |
dc.contributor.author |
Mathioudakis, K |
en |
dc.date.accessioned |
2014-03-01T02:49:44Z |
|
dc.date.available |
2014-03-01T02:49:44Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34712 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-10244270744&partnerID=40&md5=a4b0aef27df0049da070e08b562d2e2d |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Data acquisition |
en |
dc.subject.other |
Gas turbines |
en |
dc.subject.other |
Kalman filtering |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Redundancy |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Turbofan engines |
en |
dc.subject.other |
Bayesian belief network (BBN) |
en |
dc.subject.other |
Gas turbine engines |
en |
dc.subject.other |
Regression algorithms |
en |
dc.subject.other |
Soft-constrained Kalman filter (SCKF) |
en |
dc.subject.other |
Aircraft engines |
en |
dc.title |
Combining classification techniques with Kalman filters for aircraft engine diagnostics |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A diagnostic method consisting of a combination of Kalman filters and Bayesian Belief Networks (BBN) is presented. A softconstrained Kalman filter uses a priori information derived by a BBN at each time step, to derive estimations of the unknown health parameters. The resulting algorithm has improved identification capability in comparison to the stand alone Kalman filter. The paper focuses on the way of combining the information produced by the BBN with the Kalman filter. An extensive set of fault cases is used to test the method on a typical civil turbofan layout. The effectiveness of the method is thus demonstrated and its advantages over individual constituent methods are shown. |
en |
heal.journalName |
Proceedings of the ASME Turbo Expo 2004 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
595 |
en |
dc.identifier.epage |
603 |
en |