HEAL DSpace

Ecosystem classification using artificial intelligence neural networks and very high spatial resolution satellite imagery

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Keramitsoglou, I en
dc.contributor.author Sarimveis, H en
dc.contributor.author Kiranoudis, CT en
dc.contributor.author Sifakis, N en
dc.date.accessioned 2014-03-01T02:49:45Z
dc.date.available 2014-03-01T02:49:45Z
dc.date.issued 2004 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34723
dc.subject Classification en
dc.subject IKONOS en
dc.subject Neural networks en
dc.subject Radial basis function en
dc.subject.other Algorithms en
dc.subject.other Artificial intelligence en
dc.subject.other Data reduction en
dc.subject.other Forestry en
dc.subject.other Maximum likelihood estimation en
dc.subject.other Optical resolving power en
dc.subject.other Radial basis function networks en
dc.subject.other Satellites en
dc.subject.other Wetlands en
dc.subject.other Classification en
dc.subject.other IKONOS en
dc.subject.other Ecosystems en
dc.title Ecosystem classification using artificial intelligence neural networks and very high spatial resolution satellite imagery en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.511041 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.511041 en
heal.publicationDate 2004 en
heal.abstract This study investigates the potential of classifying complex ecosystems by applying the radial basis function (RBF) neural network architecture, with an innovative training method, on multispectral very high spatial resolution satellite images. The performance of the classifier has been tested with different input parameters, window sizes and neural network complexities. The maximum accuracy achieved by the proposed classifier was 78%, outperforming maximum likelihood classification by 17%. Analysis showed that the selection of input parameters is vital for the success of the classifiers. On the other hand, the incorporation of textural analysis and/or modification of the window size do not affect the performance substantially. The new technique was applied to the area of Lake Kerkini (Greece), a wetland of great ecological value, included in the NATURA 2000 list of ecosystems. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.511041 en
dc.identifier.volume 5232 en
dc.identifier.spage 228 en
dc.identifier.epage 236 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής