dc.contributor.author |
Keramitsoglou, I |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Kiranoudis, CT |
en |
dc.contributor.author |
Sifakis, N |
en |
dc.date.accessioned |
2014-03-01T02:49:45Z |
|
dc.date.available |
2014-03-01T02:49:45Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0277786X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34723 |
|
dc.subject |
Classification |
en |
dc.subject |
IKONOS |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Radial basis function |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Forestry |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.subject.other |
Optical resolving power |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Satellites |
en |
dc.subject.other |
Wetlands |
en |
dc.subject.other |
Classification |
en |
dc.subject.other |
IKONOS |
en |
dc.subject.other |
Ecosystems |
en |
dc.title |
Ecosystem classification using artificial intelligence neural networks and very high spatial resolution satellite imagery |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1117/12.511041 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1117/12.511041 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This study investigates the potential of classifying complex ecosystems by applying the radial basis function (RBF) neural network architecture, with an innovative training method, on multispectral very high spatial resolution satellite images. The performance of the classifier has been tested with different input parameters, window sizes and neural network complexities. The maximum accuracy achieved by the proposed classifier was 78%, outperforming maximum likelihood classification by 17%. Analysis showed that the selection of input parameters is vital for the success of the classifiers. On the other hand, the incorporation of textural analysis and/or modification of the window size do not affect the performance substantially. The new technique was applied to the area of Lake Kerkini (Greece), a wetland of great ecological value, included in the NATURA 2000 list of ecosystems. |
en |
heal.journalName |
Proceedings of SPIE - The International Society for Optical Engineering |
en |
dc.identifier.doi |
10.1117/12.511041 |
en |
dc.identifier.volume |
5232 |
en |
dc.identifier.spage |
228 |
en |
dc.identifier.epage |
236 |
en |