HEAL DSpace

Lateral motion tracking of automobiles

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Amditis, A en
dc.contributor.author Floudas, N en
dc.contributor.author Polychronopoulos, A en
dc.date.accessioned 2014-03-01T02:49:47Z
dc.date.available 2014-03-01T02:49:47Z
dc.date.issued 2004 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34747
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-6344291418&partnerID=40&md5=f27d809a736501670fc0416e7684df62 en
dc.subject Collision Avoidance en
dc.subject Fusion en
dc.subject Infrared en
dc.subject Kalman en
dc.subject Path prediction en
dc.subject Radar en
dc.subject.other Adaptive control systems en
dc.subject.other Collision avoidance en
dc.subject.other Computer simulation en
dc.subject.other Estimation en
dc.subject.other Infrared radiation en
dc.subject.other Kalman filtering en
dc.subject.other Matrix algebra en
dc.subject.other Radar en
dc.subject.other Sensors en
dc.subject.other Tracking (position) en
dc.subject.other Vision en
dc.subject.other Adaptive cruise control (ACC) en
dc.subject.other Kalman en
dc.subject.other Path prediction en
dc.subject.other Automobiles en
dc.title Lateral motion tracking of automobiles en
heal.type conferenceItem en
heal.publicationDate 2004 en
heal.abstract Radar sensors, though successful in range parameters tracking, fall short in lateral characteristics tracking. On the other hand, vision systems carry out perfect estimation for lateral motion, but range parameters estimation does not surpass the performance of radar. The exact estimation of vehicle's motion characteristics appears to be a crucial issue in modern automobile collision avoidance systems. Thus, a fusion system comprising of a radar and a FLIR could offer an overall accurate estimation for targets moving in highways. The main scope of the paper is the presentation of a double Kalman based filter which strives in lateral motion estimation mainly. The performance of the filter is tested by means of simulated data sets and compared with the results of the popular fusion method of cross-covariance matrix and the single sensor tracking for each sensor. en
heal.journalName Proceedings of the Seventh International Conference on Information Fusion, FUSION 2004 en
dc.identifier.volume 2 en
dc.identifier.spage 768 en
dc.identifier.epage 774 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής