dc.contributor.author |
Aggelogiannaki, E |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T02:49:57Z |
|
dc.date.available |
2014-03-01T02:49:57Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34818 |
|
dc.subject |
Control Problem |
en |
dc.subject |
Distributed Parameter System |
en |
dc.subject |
Model Predictive Control |
en |
dc.subject |
Non-linear Model |
en |
dc.subject |
Predictive Control |
en |
dc.subject |
rbf neural network |
en |
dc.subject |
Temperature Distribution |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Neural Network Model |
en |
dc.subject |
Radial Basis Function Neural Network |
en |
dc.title |
Model predictive control for distributed parameter systems using rbf neural networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-1-4020-5626-0_5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-1-4020-5626-0_5 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
A new approach for the identification and control of distributed parameter systems is presented in this paper. A radial basis neural network is used to model the distribution of the system output variables over space and time. The neural network model is then used for synthesizing a non linear model predictive control configuration. The resulting framework is particular useful for |
en |
heal.journalName |
International Conference on Informatics in Control, Automation and Robotics |
en |
dc.identifier.doi |
10.1007/978-1-4020-5626-0_5 |
en |