dc.contributor.author |
Kotsiantis, S |
en |
dc.contributor.author |
Tsekouras, G |
en |
dc.contributor.author |
Raptis, C |
en |
dc.contributor.author |
Pintelas, P |
en |
dc.date.accessioned |
2014-03-01T02:49:57Z |
|
dc.date.available |
2014-03-01T02:49:57Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34819 |
|
dc.subject |
Chemical Engineering |
en |
dc.subject |
Supervised Machine Learning |
en |
dc.title |
Modeling the Organoleptic Properties of Matured Wine Distillates |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11510888_66 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11510888_66 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We present how the supervised machine learning techniques can be used to predict quality characteristics in an important chemical engineering ap- plication: the wine distillate maturation process. A number of experiments have been conducted with six regression-based algorithms, where the M5' algorithm was proved to be the most appropriate for predicting the organoleptic properties of the matured wine distillates. The |
en |
heal.journalName |
Machine Learning and Data Mining in Pattern Recognition |
en |
dc.identifier.doi |
10.1007/11510888_66 |
en |