dc.contributor.author |
Tsogas, M |
en |
dc.contributor.author |
Polychronopoulos, A |
en |
dc.contributor.author |
Amditis, A |
en |
dc.date.accessioned |
2014-03-01T02:49:58Z |
|
dc.date.available |
2014-03-01T02:49:58Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34833 |
|
dc.subject |
State Estimation |
en |
dc.subject |
Tracking System |
en |
dc.subject |
unscented kalman filter |
en |
dc.subject |
kalman filter |
en |
dc.title |
Unscented Kalman filter design for curvilinear motion models suitable for automotive safety applications |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIF.2005.1592006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIF.2005.1592006 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Research in automotive safety leads to the conclusion that modern vehicle should utilize active and passive sensors for the recognition of the environment surrounding them. Thus, the development of tracking systems utilizing efficient state estimators is very important. In this case, problems such as moving platform carrying the sensor and maneuvering targets could introduce large errors in the state estimation |
en |
heal.journalName |
International Conference on Information Fusion |
en |
dc.identifier.doi |
10.1109/ICIF.2005.1592006 |
en |