dc.contributor.author |
Georgiou, IT |
en |
dc.contributor.author |
Papadopoulos, CI |
en |
dc.date.accessioned |
2014-03-01T02:49:59Z |
|
dc.date.available |
2014-03-01T02:49:59Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34845 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33144462202&partnerID=40&md5=eb3769b68998f9264d8aec666b9e066a |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Frequency domain analysis |
en |
dc.subject.other |
Structural analysis |
en |
dc.subject.other |
Orthogonal decomposition |
en |
dc.subject.other |
Proper Orthogonal Decomposition (POD) |
en |
dc.subject.other |
Spectral amplitudes |
en |
dc.subject.other |
Vibration measurement |
en |
dc.title |
A novel vibration analysis of stiff-soft structural systems by the method of spectral proper orthogonal decomposition |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We have analyzed the computational dynamics of a complex one-dimensional structural system consisting of a number of alternating stiff and soft subsystems. In particular, the method of Proper Orthogonal Decomposition (POD) in the frequency domain has been applied to analyze the (single-frequency) steady state dynamics in terms of spectral amplitudes and spatial shapes of proper orthogonal modes. It is shown that the dominant POD modes of such a multi-body system are sensitive to imperfections. The processing of the computational dynamics by the spectral-POD method leads to a novel computation of the transfer function of the system. Copyright © 2005 by ASME. |
en |
heal.journalName |
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005 |
en |
dc.identifier.volume |
1 C |
en |
dc.identifier.spage |
2533 |
en |
dc.identifier.epage |
2539 |
en |