dc.contributor.author |
Karadimas, NV |
en |
dc.contributor.author |
Kouzas, G |
en |
dc.contributor.author |
Anagnostopoulos, I |
en |
dc.contributor.author |
Loumos, V |
en |
dc.contributor.author |
Kayafas, E |
en |
dc.date.accessioned |
2014-03-01T02:50:00Z |
|
dc.date.available |
2014-03-01T02:50:00Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34860 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84856545157&partnerID=40&md5=9a159b120e56fa79c99c3204995b541f |
en |
dc.subject |
Ant Colony Optimization (ACO) Algorithm |
en |
dc.subject |
Cost optimization |
en |
dc.subject |
Quality of service |
en |
dc.subject |
Simulation |
en |
dc.subject |
Solid waste |
en |
dc.subject.other |
Ant colonies |
en |
dc.subject.other |
Ant Colony Optimization algorithms |
en |
dc.subject.other |
Cost optimization |
en |
dc.subject.other |
Dynamic factors |
en |
dc.subject.other |
Equipment costs |
en |
dc.subject.other |
Municipal services |
en |
dc.subject.other |
Network traffic |
en |
dc.subject.other |
Optimal solutions |
en |
dc.subject.other |
Optimized solutions |
en |
dc.subject.other |
Population densities |
en |
dc.subject.other |
Road network |
en |
dc.subject.other |
Route optimization |
en |
dc.subject.other |
Simulation |
en |
dc.subject.other |
Social implication |
en |
dc.subject.other |
Solid waste collection |
en |
dc.subject.other |
Solid waste management systems |
en |
dc.subject.other |
Spatial database |
en |
dc.subject.other |
Spatio-temporal |
en |
dc.subject.other |
Static and dynamic |
en |
dc.subject.other |
Technical characteristics |
en |
dc.subject.other |
Time schedules |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Geographic information systems |
en |
dc.subject.other |
Information management |
en |
dc.subject.other |
Motor transportation |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Population statistics |
en |
dc.subject.other |
Public utilities |
en |
dc.subject.other |
Quality of service |
en |
dc.subject.other |
Solid wastes |
en |
dc.subject.other |
Waste management |
en |
dc.subject.other |
Municipal solid waste |
en |
dc.title |
ANT colony route optimization for municipal services |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In the present paper the Ant Colony Optimization (ACO) Algorithm is introduced for best routing identification applied in urban solid waste collection. The proposed solid waste management system is based on a geo-referenced Spatial Database supported by a Geographic Information System (GIS). The GIS takes account of all the required parameters for solid waste collection. These parameters involve static and dynamic data, such as positions of trashcans, road network, related traffic and population density, In addition, time schedule of trash-collection workers and track capacities and technical characteristics are considered. ACO spatio-temporal statistical analysis model is used to estimate interrelations between dynamic factors, like network traffic changes in residential and commercial areas in a 24 hour schedule, and to produce optimized solutions. The user, in the proposed system, is able to define or modify all required dynamic factors for the creation of an initial scenario. By modifying these particular parameters, alternative scenarios can be generated leading to the several solutions. The Optimal solution is identified by a cost function that takes into account various parameters, for instance labor and equipment costs as well as social implications. © ECMS, 2005. |
en |
heal.journalName |
Simulation in Wider Europe - 19th European Conference on Modelling and Simulation, ECMS 2005 |
en |
dc.identifier.spage |
374 |
en |
dc.identifier.epage |
380 |
en |