dc.contributor.author |
Kolliopoulou, S |
en |
dc.contributor.author |
Tsoukalas, D |
en |
dc.contributor.author |
Dimitrakis, P |
en |
dc.contributor.author |
Normand, P |
en |
dc.contributor.author |
Paul, S |
en |
dc.contributor.author |
Pearson, C |
en |
dc.contributor.author |
Molloy, A |
en |
dc.contributor.author |
Petty, MC |
en |
dc.date.accessioned |
2014-03-01T02:50:06Z |
|
dc.date.available |
2014-03-01T02:50:06Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
02729172 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34896 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-20344408050&partnerID=40&md5=df314917b959a58adeac4e056e3a9616 |
en |
dc.subject.other |
Electric insulators |
en |
dc.subject.other |
Gold |
en |
dc.subject.other |
Langmuir Blodgett films |
en |
dc.subject.other |
Metallizing |
en |
dc.subject.other |
Nanostructured materials |
en |
dc.subject.other |
Nonvolatile storage |
en |
dc.subject.other |
Oxides |
en |
dc.subject.other |
Silicon |
en |
dc.subject.other |
Thermal effects |
en |
dc.subject.other |
Coulomb blockade phenomena |
en |
dc.subject.other |
Electronic coupling |
en |
dc.subject.other |
Nanocrystals |
en |
dc.subject.other |
Non-volatile memories |
en |
dc.subject.other |
MISFET devices |
en |
dc.title |
Gold Langmuir-Blodgett deposited nanoparticles for non-volatile memories |
en |
heal.type |
conferenceItem |
en |
heal.identifier.secondary |
D6.7 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this work, we demonstrate a MISFET memory device that incorporates a monolayer of Langmuir-Blodgett (LB) deposited gold nanoparticles as floating gate charge storage elements. The FET device is fabricated on a SOI substrate using conventional silicon processing. The nanoparticle layer is separated from the channel area of the FET with a 5 nm thermal SiC2 layer and is isolated from Al gate contact with a LB-deposited organic insulator layer. The memory effect is tested using voltage pulses on the gate of the device and monitored through drain current measurements. The nanocrystals can be charged either from the channel through the thermal oxide layer by applying pulses smaller than 5 V or from the gate through the organic insulator for higher voltage depending on the pulse duration. © 2005 Materials Research Society. |
en |
heal.journalName |
Materials Research Society Symposium Proceedings |
en |
dc.identifier.volume |
830 |
en |
dc.identifier.spage |
287 |
en |
dc.identifier.epage |
292 |
en |