HEAL DSpace

Multilayered thin film structures as photonic temperature sensors

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Madamopoulos, N en
dc.contributor.author Tsigara, A en
dc.contributor.author Vainos, N en
dc.contributor.author Kaminska, E en
dc.contributor.author Piotrowska, A en
dc.contributor.author Kibasi, K en
dc.date.accessioned 2014-03-01T02:50:10Z
dc.date.available 2014-03-01T02:50:10Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34922
dc.subject.other Magnetron sputtering en
dc.subject.other Monochromators en
dc.subject.other Optical sensors en
dc.subject.other Reflection en
dc.subject.other Refractive index en
dc.subject.other Signal interference en
dc.subject.other Multilayered thin film structures en
dc.subject.other Passive optical elements en
dc.subject.other Photonic temperature sensors en
dc.subject.other Temperature variations en
dc.subject.other Thin films en
dc.title Multilayered thin film structures as photonic temperature sensors en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CLEOE.2005.1568225 en
heal.identifier.secondary http://dx.doi.org/10.1109/CLEOE.2005.1568225 en
heal.identifier.secondary 1568225 en
heal.publicationDate 2005 en
heal.abstract Thin multilayered films fabricated by magnetron sputtering were built and tested as passive optical elements for the meassurement of temperature variations. They were studied for their performance and integrated into photonic temperature sensors. Photonic devices for temperature sensing applications are of interest because they can be remotely operated, which is advantageous in harsh environments, and they are immune to electromagnetic interference (EMI). The structures presented here are consisting of three or more alterating metal and metal-oxide layers of high optical quality with appropriate optical interferometric response. The design of the multilayered films, selection of materials and layer thickness, was based on achieving high modulation depth of the reflectivity as a function of wavelength or incidence angle. The materials used were Palladium, Platinum, Ruthenium, and Tin oxide. The individual film thickness ranges from 2nm to 500nm. Optical measurements under temperature variation are based on the reflectance signal by using a monochromatic optical source. The sub-nanometer range thermal expansion for the film structure has negligible effects in the meassured optical signal and thus excluded. First results show very reliable performance in the temperature range from 10 to 70°C. Previous work1 on multilayered structures showed that charge carrier excitation and lattice modification causes variations of the complex refractive index of the multilayered films. Hence, temperature variations cause the reflectivity of the multilayered film structure to change. The nanoscopic behavior of the grown systems is under further investigation. © 2005 IEEE. en
heal.journalName Conference on Lasers and Electro-Optics Europe - Technical Digest en
dc.identifier.doi 10.1109/CLEOE.2005.1568225 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής