HEAL DSpace

Nonstationary stochastic modelling of multivariate long-term wind and wave data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stefanakos, CN en
dc.contributor.author Belibassakis, KA en
dc.date.accessioned 2014-03-01T02:50:10Z
dc.date.available 2014-03-01T02:50:10Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34928
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-27744470000&partnerID=40&md5=93854386314a196c1d1e1928538ed4eb en
dc.subject.other Computer simulation en
dc.subject.other Data acquisition en
dc.subject.other Information analysis en
dc.subject.other Offshore structures en
dc.subject.other Random processes en
dc.subject.other Time series analysis en
dc.subject.other Wind effects en
dc.subject.other Data model en
dc.subject.other Stochastic model en
dc.subject.other Time series en
dc.subject.other Wave data en
dc.subject.other Standardization en
dc.title Nonstationary stochastic modelling of multivariate long-term wind and wave data en
heal.type conferenceItem en
heal.identifier.secondary OMAE2005-67461 en
heal.publicationDate 2005 en
heal.abstract In the present work, a nonstationary stochastic model, which is suitable for the analysis and simulation of multivariate time series of wind and wave data, is being presented and validated. This model belongs to the class of periodically correlated stochastic processes with yearly periodic mean value and standard deviation (periodically correlated or cyclostationary stochastic process). First, the time series is appropriately transformed to become Gaussian using the Box-Cox transformation. Then, the series is decomposed, using an appropriate seasonal standardization procedure, to a periodic (deterministic) mean value and a (stochastic) residual time series multiplied by a periodic (deterministic) standard deviation. The periodic components are estimated using appropriate lime series of monthly data. The residual stochastic part, which is proved to be stationary, is modelled as a VARMA process. This way the initial process can be given the structure of a multivariate periodically correlated process. The present methodology permits a reliable reproduction of available information about wind and wave conditions, which is required for a number of applications. Copyright © 2005 by ASME. en
heal.journalName Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE en
dc.identifier.volume 2 en
dc.identifier.spage 225 en
dc.identifier.epage 234 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής