HEAL DSpace

Simulating the Tanker shipping market with the use of combined Generalized Autoregressive Conditional Heteroscedasticity and auto regressive moving average models (GARCH-ARMA)

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lyridis, DV en
dc.contributor.author Zacharioudakis, PG en
dc.contributor.author Panagopoulos, NSV en
dc.date.accessioned 2014-03-01T02:50:12Z
dc.date.available 2014-03-01T02:50:12Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34952
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-77957961216&partnerID=40&md5=833d47f5117875886c80180e6b023684 en
dc.subject.other ARMA model en
dc.subject.other Auto-regressive moving average model en
dc.subject.other Cash flow models en
dc.subject.other Data preprocessing en
dc.subject.other Financial time series en
dc.subject.other Generalized autoregressive conditional heteroscedasticity en
dc.subject.other Heteroscedastic en
dc.subject.other Keypoints en
dc.subject.other Management problems en
dc.subject.other Monte carlo simulation technique en
dc.subject.other Numerical simulation en
dc.subject.other Option pricing en
dc.subject.other Path generators en
dc.subject.other Seasonality en
dc.subject.other Shipping market en
dc.subject.other Stationary time series en
dc.subject.other Suezmax tanker en
dc.subject.other Time fields en
dc.subject.other Very large crude carriers en
dc.subject.other Commerce en
dc.subject.other Computer simulation en
dc.subject.other Economics en
dc.subject.other Finance en
dc.subject.other Financial data processing en
dc.subject.other Monte Carlo methods en
dc.subject.other Oil tankers en
dc.subject.other Profitability en
dc.subject.other Risk analysis en
dc.subject.other Risk management en
dc.subject.other Ships en
dc.subject.other Time series en
dc.subject.other Cost benefit analysis en
dc.title Simulating the Tanker shipping market with the use of combined Generalized Autoregressive Conditional Heteroscedasticity and auto regressive moving average models (GARCH-ARMA) en
heal.type conferenceItem en
heal.publicationDate 2005 en
heal.abstract In this paper, we propose an innovative methodology framework in order to validate financial projects in Tanker shipping market. In this context, we study the behavior of the profitability of the Very Large Crude Carriers. It is a fact that data of VLCC Earnings in time field are formed in clusters of volatility hence a heteroscedastic nature is present. We construct a path generator by implementing the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) on data, which was introduced by Bollerslev and Engle and which can be used to simulate financial time series. In order to apply composite GARCH and ARMA models, data preprocessing was necessary. Therefore, we extracted seasonality patterns, we followed solid techniques to remove trend and finally a transformed stationary time series was obtained. We calculate models parameters and select the most accurate by using error criteria. A dedicated cash flow model is constructed and Monte Carlo simulation technique is performed by applying numerous earnings realizations and producing financial outcomes over future time. Various financial projects - e.g. buy a VLCC or two Suezmax Tankers, a new building or a secondhand and at what price - can be validated with numerical simulation. The described methodology is the initial key point towards cost benefit analysis, option pricing, future freight agreements and generally risk management problems in Tanker shipping market. en
heal.journalName 1st International Symposium on Ship Operations, Management and Economics 2005 en
dc.identifier.spage 95 en
dc.identifier.epage 101 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής