dc.contributor.author |
Amoiralis, E |
en |
dc.contributor.author |
Georgilakis, P |
en |
dc.contributor.author |
Gioulekas, A |
en |
dc.date.accessioned |
2014-03-01T02:50:14Z |
|
dc.date.available |
2014-03-01T02:50:14Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34981 |
|
dc.subject |
Artificial Neural Network |
en |
dc.subject |
Power Transformer |
en |
dc.subject |
Success Rate |
en |
dc.title |
An Artificial Neural Network for the Selection of Winding Material in Power Transformers |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11752912_46 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11752912_46 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The selection of the winding material in power transformers is an important task, since it has significant impact on the transformer manufacturing cost. This winding material selection has to be checked in every transformer design, which means that for each design, there is a need to optimize the transformer twice and afterwards to select the most economical design. In this |
en |
heal.journalName |
Hellenic Conference on Artificial Intelligence |
en |
dc.identifier.doi |
10.1007/11752912_46 |
en |