HEAL DSpace

A comparison of machine learning models for speed estimation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Antoniou, C en
dc.contributor.author Koutsopoulos, HN en
dc.date.accessioned 2014-03-01T02:50:17Z
dc.date.available 2014-03-01T02:50:17Z
dc.date.issued 2006 en
dc.identifier.issn 14746670 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35031
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-79961101037&partnerID=40&md5=c9be9a95f5e00a09d2c9094218c59c3f en
dc.subject Machine learning en
dc.subject Neural networks en
dc.subject Non-parametric regression en
dc.subject Road traffic en
dc.subject.other Alternative approach en
dc.subject.other Dynamic traffic assignments en
dc.subject.other Locally weighted regression en
dc.subject.other Machine learning methods en
dc.subject.other Machine-learning en
dc.subject.other Non-parametric regression en
dc.subject.other On-machines en
dc.subject.other Road traffic en
dc.subject.other Sensor data en
dc.subject.other Simulation-based en
dc.subject.other Speed estimation en
dc.subject.other Speed-density relationships en
dc.subject.other Support vector regressions en
dc.subject.other Traffic dynamics en
dc.subject.other Traffic flow theory en
dc.subject.other Traffic simulations en
dc.subject.other Traffic streams en
dc.subject.other Computer simulation en
dc.subject.other Estimation en
dc.subject.other Neural networks en
dc.subject.other Regression analysis en
dc.subject.other Stream flow en
dc.subject.other Traffic control en
dc.subject.other Learning systems en
dc.title A comparison of machine learning models for speed estimation en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract Speed-density relationships are a classic way of modeling stationary traffic relationships. Besides offering valuable insight in traffic stream flows, such relationships are widely used in simulation-based Dynamic Traffic Assignment (DTA) systems. In this paper, alternative approaches for modeling traffic dynamics, appropriate for traffic simulation, are proposed. Their basic premise is the wide availability of sensor data. The approaches are based on machine learning methods such as locally weighted regression and support vector regression. Neural networks are also considered, as they are a well-established approach, successful in many applications. While such models may not provide as much insight into traffic flow theory, they allow for easy incorporation of additional information to speed estimation, and hence, may be more appropriate for use in DTA models, especially simulation based. In particular, in this paper, it is demonstrated (using data from a network in Irvine, CA) that the use of such machine learning methods can improve the accuracy of speed estimation. Copyright © 2006 IFAC. en
heal.journalName IFAC Proceedings Volumes (IFAC-PapersOnline) en
dc.identifier.volume 11 en
dc.identifier.issue PART 1 en
dc.identifier.spage 55 en
dc.identifier.epage 60 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής