dc.contributor.author |
Hristopulos, DT |
en |
dc.contributor.author |
Leonidakis, L |
en |
dc.contributor.author |
Tsetsekou, A |
en |
dc.date.accessioned |
2014-03-01T02:50:17Z |
|
dc.date.available |
2014-03-01T02:50:17Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
14346028 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35035 |
|
dc.subject.other |
Activation energy |
en |
dc.subject.other |
Amorphization |
en |
dc.subject.other |
Crystal microstructure |
en |
dc.subject.other |
Discrete time control systems |
en |
dc.subject.other |
Large scale systems |
en |
dc.subject.other |
Mass transfer |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Sintering |
en |
dc.subject.other |
Solid state physics |
en |
dc.subject.other |
Discrete nonlinear mass transfer equation |
en |
dc.subject.other |
Grain structures |
en |
dc.subject.other |
Multiscale processes |
en |
dc.subject.other |
Solid-state sintering |
en |
dc.subject.other |
Ceramic materials |
en |
dc.title |
A discrete nonlinear mass transfer equation with applications in solid-state sintering of ceramic materials |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1140/epjb/e2006-00034-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1140/epjb/e2006-00034-0 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The evolution of grain structures in materials is a complex and multiscale process that determines the material's final properties [1]. Understanding the dynamics of grain growth is a key factor for controlling this process. We propose a phenomenological approach, based on a nonlinear, discrete mass transfer equation for the evolution of an arbitrary initial grain size distribution. Transition rates for mass transfer across grains are assumed to follow the Arrhenius law, but the activation energy depends on the degree of amorphization of each grain. We argue that the magnitude of the activation energy controls the final (sintered) grain size distribution, and we verify this prediction by numerical simulation of mass transfer in a one-dimensional grain aggregate. |
en |
heal.journalName |
European Physical Journal B |
en |
dc.identifier.doi |
10.1140/epjb/e2006-00034-0 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
83 |
en |
dc.identifier.epage |
87 |
en |