HEAL DSpace

A discrete nonlinear mass transfer equation with applications in solid-state sintering of ceramic materials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Hristopulos, DT en
dc.contributor.author Leonidakis, L en
dc.contributor.author Tsetsekou, A en
dc.date.accessioned 2014-03-01T02:50:17Z
dc.date.available 2014-03-01T02:50:17Z
dc.date.issued 2006 en
dc.identifier.issn 14346028 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35035
dc.subject.other Activation energy en
dc.subject.other Amorphization en
dc.subject.other Crystal microstructure en
dc.subject.other Discrete time control systems en
dc.subject.other Large scale systems en
dc.subject.other Mass transfer en
dc.subject.other Nonlinear equations en
dc.subject.other Sintering en
dc.subject.other Solid state physics en
dc.subject.other Discrete nonlinear mass transfer equation en
dc.subject.other Grain structures en
dc.subject.other Multiscale processes en
dc.subject.other Solid-state sintering en
dc.subject.other Ceramic materials en
dc.title A discrete nonlinear mass transfer equation with applications in solid-state sintering of ceramic materials en
heal.type conferenceItem en
heal.identifier.primary 10.1140/epjb/e2006-00034-0 en
heal.identifier.secondary http://dx.doi.org/10.1140/epjb/e2006-00034-0 en
heal.publicationDate 2006 en
heal.abstract The evolution of grain structures in materials is a complex and multiscale process that determines the material's final properties [1]. Understanding the dynamics of grain growth is a key factor for controlling this process. We propose a phenomenological approach, based on a nonlinear, discrete mass transfer equation for the evolution of an arbitrary initial grain size distribution. Transition rates for mass transfer across grains are assumed to follow the Arrhenius law, but the activation energy depends on the degree of amorphization of each grain. We argue that the magnitude of the activation energy controls the final (sintered) grain size distribution, and we verify this prediction by numerical simulation of mass transfer in a one-dimensional grain aggregate. en
heal.journalName European Physical Journal B en
dc.identifier.doi 10.1140/epjb/e2006-00034-0 en
dc.identifier.volume 50 en
dc.identifier.issue 1-2 en
dc.identifier.spage 83 en
dc.identifier.epage 87 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής