HEAL DSpace

Artificial neural networks modeling of surface finish in electro-discharge machining of tool steels

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Markopoulos, A en
dc.contributor.author Vaxevanidis, NM en
dc.contributor.author Petropoulos, G en
dc.contributor.author Manolakos, DE en
dc.date.accessioned 2014-03-01T02:50:19Z
dc.date.available 2014-03-01T02:50:19Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35051
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33845748242&partnerID=40&md5=0518260b564166c476531d615db3ebff en
dc.subject.other Computer simulation en
dc.subject.other Electric discharge machining en
dc.subject.other Finishing en
dc.subject.other Melting en
dc.subject.other Neural networks en
dc.subject.other Complex metal removal mechanism en
dc.subject.other Levenberg-Marquardt algorithm en
dc.subject.other Plasma channels en
dc.subject.other Workpiece electrodes en
dc.subject.other Tool steel en
dc.title Artificial neural networks modeling of surface finish in electro-discharge machining of tool steels en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract Electro-Discharge machining (EDM) is a thermal process with a complex metal removal mechanism that involves the formation of a plasma channel between the tool and the workpiece electrodes and the melting and evaporation of material resulted thus in the generation of a rough surface consisting of a large number of randomly overlapping craters and no preferential direction. EDM is considered especially suitable for machining complex contours, with high accuracy and for materials that are not amenable to conventional removal methods. However, certain phenomena negatively affecting the surface integrity of EDMed workpieces, constrain the expanded application of the technology. Accordingly, it has been difficult to establish models that correlate accurately the operational variables and the performance towards the optimization of the process. In recent years, artificial neural networks (ANN) have emerged as a novel modeling technique that is able to provide reliable results and it can be integrated into a great number of technological areas including various aspects of manufacturing. In this paper ANN models for the prediction of the surface roughness of electro-discharge machined surfaces are presented. A feed-forward artificial ANN trained with the Levenberg-Marquardt algorithm was finally selected. The proposed neural network takes into consideration the pulse current and the pulse-on time as EDM process variables, for three different tool steels in order to determine the center-line average (Ra) and the maximum height of the profile (Rt) surface roughness parameters. Copyright © 2006 by ASME. en
heal.journalName Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006 en
dc.identifier.volume 2006 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής