HEAL DSpace

Computer vision algorithms in DNA ploidy image analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Alexandratou, E en
dc.contributor.author Sofou, A en
dc.contributor.author Papasaika, H en
dc.contributor.author Maragos, P en
dc.contributor.author Yova, D en
dc.contributor.author Kavantzas, N en
dc.date.accessioned 2014-03-01T02:50:19Z
dc.date.available 2014-03-01T02:50:19Z
dc.date.issued 2006 en
dc.identifier.issn 16057422 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35061
dc.subject Color features en
dc.subject DNA ploidy en
dc.subject Image cytometry en
dc.subject Image simplification en
dc.subject Prostate cancer en
dc.subject Watershed transformation en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other DNA en
dc.subject.other Image analysis en
dc.subject.other Microscopic examination en
dc.subject.other Tumors en
dc.subject.other DNA ploidy en
dc.subject.other Image cytometry en
dc.subject.other Image simplification en
dc.subject.other Prostate cancer en
dc.subject.other Computer vision en
dc.title Computer vision algorithms in DNA ploidy image analysis en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.646304 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.646304 en
heal.identifier.secondary 60880O en
heal.publicationDate 2006 en
heal.abstract The high incidence and mortality rates of prostate cancer have stimulated research for prevention, early diagnosis and appropriate treatment. DNA ploidy status of tumour cells is an important parameter with diagnostic and prognostic significance. In the current study, DNA ploidy analysis was performed using image cytometry technique and digital image processing and analysis. Tissue samples from prostate patients were stained using the Feulgen method. Images were acquired using a digital imaging microscopy system consisting of an Olympus BX-50 microscope equipped with a color CCD camera. Segmentation of such images is not a trivial problem because of the uneven background, intensity variations within the nuclei and cell clustering. In this study specific algorithms were developed in Matlab based on the most prominent image segmentation approaches that emanate from the field of Mathematical Morphology, focusing on region-based watershed segmentation. First biomedical images were simplified under non-linear filtering (alternate sequential filters, levelings), and next image features such as gradient information and markers were extracted so as to lead the segmentation process. The extracted markers are used as seeds; watershed transformation was performed to the gradient of the filtered image. Image flooding was performed isotropically from the markers using hierarchical queues based on Beucher and Meyer methodology. The developed algorithms have successfully segmented the cell from its background and from cells clusters as well. To characterize the nuclei, we attempt to derive a set of effective color features. By analyzing more than 50 color features, we have found that a set of color features, hue, saturation-weighted hue, I1, = (R + G + B) /3, I2, = (R - B), I3 = (2G - R - B)/2, Karhunen-Loève transformation and energy operator, are effective. en
heal.journalName Progress in Biomedical Optics and Imaging - Proceedings of SPIE en
dc.identifier.doi 10.1117/12.646304 en
dc.identifier.volume 6088 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής