HEAL DSpace

Dark formation detection using recurrent neural networks and SAR data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Topouzelis, K en
dc.contributor.author Karathanassi, V en
dc.contributor.author Pavlakis, P en
dc.contributor.author Rokos, D en
dc.date.accessioned 2014-03-01T02:50:19Z
dc.date.available 2014-03-01T02:50:19Z
dc.date.issued 2006 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35062
dc.subject Dark formation en
dc.subject Neural networks en
dc.subject Oil spill en
dc.subject Recurrent en
dc.subject Remote sensing en
dc.subject SAR en
dc.subject.other Dark formation detection en
dc.subject.other Jordan's recurrent networks en
dc.subject.other Satellite images en
dc.subject.other Spatially finite functions en
dc.subject.other Classification (of information) en
dc.subject.other Data reduction en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Radar imaging en
dc.subject.other Synthetic aperture radar en
dc.subject.other Pattern recognition en
dc.title Dark formation detection using recurrent neural networks and SAR data en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.687852 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.687852 en
heal.identifier.secondary 636511 en
heal.publicationDate 2006 en
heal.abstract In this paper a classification scheme based on recurrent neural networks is presented. Neural networks may be viewed as a mathematical model composed of many non-linear computational elements, called neurons, operating in parallel and massively connected by links characterized by different weights. It is well known that conventional feedforward neural networks can be used to approximate any spatially finite function given a set of hidden nodes. Recurrent neural networks are fundamentally different from feedforward architectures in the sense that they not only operate on an input space but also on an internal state space - a trace of what already has been processed by the network. This capability is referred as internal memory of the recurrent networks. The general objectives of this paper are to describe, demonstrate and test the potential of simple recurrent artificial neural networks for dark formation detection using SAR satellite images over the sea surface. The type and the architecture of the network are subjects of research. Input to the networks is the original SAR image. The network is called to classify the image into dark formations and clean sea. Elman's and Jordan's recurrent networks have been examined. Jordan's networks have been recognized as more suitable for dark formation detection. The Jordan's specific architecture with five inputs, three hidden neurons and one output is proposed for dark formation detection as it classifies correctly more than 95.5% of the data set. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.687852 en
dc.identifier.volume 6365 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής