HEAL DSpace

Employing neural networks to assist negotiating intelligent agents

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Roussaki, I en
dc.contributor.author Papaioannou, I en
dc.contributor.author Anagnostou, M en
dc.date.accessioned 2014-03-01T02:50:21Z
dc.date.available 2014-03-01T02:50:21Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35083
dc.subject.other Communication systems en
dc.subject.other Computational methods en
dc.subject.other Mobile agents en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Web services en
dc.subject.other Human intelligence en
dc.subject.other Mobile intelligent agents en
dc.subject.other Network nodes en
dc.subject.other Intelligent agents en
dc.title Employing neural networks to assist negotiating intelligent agents en
heal.type conferenceItem en
heal.identifier.primary 10.1049/cp:20060631 en
heal.identifier.secondary http://dx.doi.org/10.1049/cp:20060631 en
heal.publicationDate 2006 en
heal.abstract Artificial intelligence is one of the various disciplines that need to be employed towards the vision of ambient intelligence. Mobile intelligent agents introduce a powerful technology that may assist the market penetration of services and products offered online in intelligent environments. Such agents have the potential to improve the efficiency, proactive behaviour and performance of computing and communication systems in such domains. In this framework, the design and evaluation of agents responsible for handling automated negotiations on behalf of their human or corporate owners is a challenging research field. In this paper these agents are enhanced with learning techniques, in order to better simulate the human intelligence and increase the profits of their owners. As mobile agents have reduced processing capabilities and may need to migrate to foreign network nodes, the learning mechanisms they employ should require minimal resources and be computationally efficient. The proposed learning technique is based on a specially designed neural network (NN), is quite lightweight, and is appropriate for agents that represent clients in automated negotiations in intelligent environments. Exploited by agents that use a fair relative tit-for-tat negotiation strategy, it aims to increase the ratio of successful negotiations and maximize the utility of the client. The designed NN-assisted negotiation strategy has been empirically evaluated via numerous experiments under various conditions. en
heal.journalName IET Conference Publications en
dc.identifier.doi 10.1049/cp:20060631 en
dc.identifier.issue 518 en
dc.identifier.spage 101 en
dc.identifier.epage 110 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής