HEAL DSpace

Gas turbine fault diagnosis from fast response data using probabilistic methods and information fusion

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kyriazis, A en
dc.contributor.author Aretakis, N en
dc.contributor.author Mathioudakis, K en
dc.date.accessioned 2014-03-01T02:50:23Z
dc.date.available 2014-03-01T02:50:23Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35103
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33750805499&partnerID=40&md5=8258b283d49ef77e5072dafd936b2414 en
dc.subject.other Compressors en
dc.subject.other Failure analysis en
dc.subject.other Pattern recognition en
dc.subject.other Probabilistic logics en
dc.subject.other Vibrations (mechanical) en
dc.subject.other Bayesian Belief Networks en
dc.subject.other Probabilistic Neural Networks en
dc.subject.other Radial compressors en
dc.subject.other Spectral fault signatures en
dc.subject.other Gas turbines en
dc.title Gas turbine fault diagnosis from fast response data using probabilistic methods and information fusion en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract The paper covers firstly the use of probabilistic neural networks for the classification of spectral fault signatures obtained from fast response data (sound, vibration, unsteady pressure). The method is compared to other alternatives, such as geometrical and statistical pattern recognition. The effectiveness of the method is demonstrated by presenting the results from application to data from a radial compressor and an industrial gas turbine. Further, probabilistic methods are used to perform information fusion. The outcomes of different diagnostic methods are used as a first level of diagnostic inference, and are fed to two different fusion processes which are based on ^Probabilistic Neural Networks and ii)Bayesian Belief Networks. It is demonstrated that these fusion processes provide powerful tools for effective fault classification. Copyright © 2006 by ASME. en
heal.journalName Proceedings of the ASME Turbo Expo en
dc.identifier.volume 2 en
dc.identifier.spage 571 en
dc.identifier.epage 579 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής