HEAL DSpace

Large deflection analysis of membranes containing rigid inclusions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nerantzaki, MS en
dc.contributor.author Kandilas, CB en
dc.date.accessioned 2014-03-01T02:50:26Z
dc.date.available 2014-03-01T02:50:26Z
dc.date.issued 2006 en
dc.identifier.issn 1743355X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35115
dc.subject Analog equation method en
dc.subject Boundary elements en
dc.subject Elastic membranes en
dc.subject Large deflections en
dc.subject Nonlinear en
dc.subject Rigid inclusion en
dc.subject.other Boundary element method en
dc.subject.other Nonlinear analysis en
dc.subject.other Nonlinear systems en
dc.subject.other Poisson equation en
dc.subject.other Problem solving en
dc.subject.other Analog Equation Method (AEM) en
dc.subject.other Elastic membranes en
dc.subject.other Large deflections en
dc.subject.other Rigid inclusion en
dc.subject.other Nonlinear equations en
dc.title Large deflection analysis of membranes containing rigid inclusions en
heal.type conferenceItem en
heal.identifier.primary 10.2495/BE06010 en
heal.identifier.secondary http://dx.doi.org/10.2495/BE06010 en
heal.publicationDate 2006 en
heal.abstract In this paper the deformation of membranes containing rigid inclusions is analyzed. These rigid inclusions can significantly change the entire stress distribution in the membrane and therefore create major difficulties for the design. The initially flat membrane, which may be prestretched by boundary in-plane tractions or displacements, is subjected to externally applied loads and to the weight of the rigid inclusions. The composite system is examined in cases where it's deformation reaches a state for which the undeformed and deformed shapes are substantially different. In such cases large deflections of membranes are considered, which result from nonlinear kinematic relations. The three coupled nonlinear equations in terms of the displacements governing the response of the membrane are solved using the Analog Equation Method (AEM), which reduces the problem to the solution of three uncoupled Poisson's equations with fictitious domain source densities. The problem is strongly nonlinear. In addition to the geometrical nonlinearity, the problem is itself nonlinear, because the membrane's reactions on the boundary of the rigid inclusions are not a priori known as they depend on the produced deflection surface. Iterative schemes are developed for the calculation of deformed membrane's configuration which converges to the final equilibrium state of the membrane with the given external applied loads. Several example problems are presented, which illustrate the method and demonstrate its accuracy and efficiency. The method has all the advantages of the pure BEM. en
heal.journalName WIT Transactions on Modelling and Simulation en
dc.identifier.doi 10.2495/BE06010 en
dc.identifier.volume 42 en
dc.identifier.spage 91 en
dc.identifier.epage 100 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής