HEAL DSpace

Large-scale feature selection using evolved neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stathakis, D en
dc.contributor.author Topouzelis, K en
dc.contributor.author Karathanassi, V en
dc.date.accessioned 2014-03-01T02:50:26Z
dc.date.available 2014-03-01T02:50:26Z
dc.date.issued 2006 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35116
dc.subject Feature selection en
dc.subject Genetic algorithm en
dc.subject Neural networks en
dc.subject Oil spill en
dc.subject SAR en
dc.subject.other Dark formations en
dc.subject.other Large scale feature selection en
dc.subject.other Neural network topology en
dc.subject.other Testing classification accuracy en
dc.subject.other Artificial intelligence en
dc.subject.other Classification (of information) en
dc.subject.other Genetic algorithms en
dc.subject.other Large scale systems en
dc.subject.other Neural networks en
dc.subject.other Oil bearing formations en
dc.subject.other Synthetic aperture radar en
dc.subject.other Feature extraction en
dc.title Large-scale feature selection using evolved neural networks en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.688149 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.688149 en
heal.identifier.secondary 636513 en
heal.publicationDate 2006 en
heal.abstract In this paper computational intelligence, referring here to the synergy of neural networks and genetic algorithms, is deployed in order to determine a near-optimal neural network for the classification of dark formations in oil spills and look-alikes. Optimality is sought in the framework of a multi-objective problem, i.e. the minimization of input features used and, at the same time, the maximization of overall testing classification accuracy. The proposed method consists of two concurrent actions. The first is the identification of the subset of features that results in the highest classification accuracy on the testing data set i.e. feature selection. The second parallel process is the search for the neural network topology, in terms of number of nodes in the hidden layer, which is able to yield optimal results with respect to the selected subset of features. The results show that the proposed method, i.e. concurrently evolving features and neural network topology, yields superior classification accuracy compared to sequential floating forward selection as well as to using all features together. The accuracy matrix is deployed to show the generalization capacity of the discovered neural network topology on the evolved sub-set of features. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.688149 en
dc.identifier.volume 6365 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής