dc.contributor.author |
Rapantzikos, K |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:50:52Z |
|
dc.date.available |
2014-03-01T02:50:52Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
15224880 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35173 |
|
dc.subject |
Image denoising |
en |
dc.subject |
Saliency detection |
en |
dc.subject |
Wavelet shrinkage |
en |
dc.subject.other |
Computationally efficient models |
en |
dc.subject.other |
De noises |
en |
dc.subject.other |
Denoising |
en |
dc.subject.other |
Denoising algorithms |
en |
dc.subject.other |
Image denoising |
en |
dc.subject.other |
Multiresolution wavelet transforms |
en |
dc.subject.other |
Noise levels |
en |
dc.subject.other |
Saliency detection |
en |
dc.subject.other |
Salient regions |
en |
dc.subject.other |
Visual qualities |
en |
dc.subject.other |
Wavelet domains |
en |
dc.subject.other |
Wavelet shrinkage |
en |
dc.subject.other |
Conformal mapping |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Image enhancement |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
Shrinkage |
en |
dc.subject.other |
Wavelet transforms |
en |
dc.subject.other |
Image processing |
en |
dc.title |
salienShrink: Saliency-based wavelet shrinkage |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.2007.4378952 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.2007.4378952 |
en |
heal.identifier.secondary |
4378952 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This paper describes salienShrink, a method to denoise images based on computing a map of salient coefficients in the wavelet domain and use it to improve common denoising algorithms. By salient, we refer to those coefficients that correspond mostly to pure signal and should therefore be preserved throughout the denoising procedure. We use a computationally efficient model to detect salient regions in the bands of the multiresolution wavelet transform. These regions are used to obtain a more accurate estimate of the noise level, improving the performance of existing well known shrinkage methods. Extensive experimental results on the BiShrink method show that the proposed method effectively enhances PSNR and improves the visual quality of the denoised images. © 2007 IEEE. |
en |
heal.journalName |
Proceedings - International Conference on Image Processing, ICIP |
en |
dc.identifier.doi |
10.1109/ICIP.2007.4378952 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
I305 |
en |
dc.identifier.epage |
I308 |
en |