dc.contributor.author |
Georgopoulos, EC |
en |
dc.contributor.author |
Tsompanakis, Y |
en |
dc.contributor.author |
Lagaros, ND |
en |
dc.contributor.author |
Psarropoulos, PN |
en |
dc.date.accessioned |
2014-03-01T02:50:53Z |
|
dc.date.available |
2014-03-01T02:50:53Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35182 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-56149097114&partnerID=40&md5=5c98d480cea21494e1b9fc20bb831572 |
en |
dc.subject.other |
Civil engineering |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Electric fault location |
en |
dc.subject.other |
Embankments |
en |
dc.subject.other |
Engineering |
en |
dc.subject.other |
Engineering geology |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Hydraulic structures |
en |
dc.subject.other |
Model structures |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Number theory |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Seismic response |
en |
dc.subject.other |
Seismology |
en |
dc.subject.other |
Soft computing |
en |
dc.subject.other |
Accurate predictions |
en |
dc.subject.other |
Artificial neural networks |
en |
dc.subject.other |
Earthquake engineerings |
en |
dc.subject.other |
Finite-element methods |
en |
dc.subject.other |
Non linearities |
en |
dc.subject.other |
SC techniques |
en |
dc.subject.other |
Soft Computing techniques |
en |
dc.subject.other |
Geotechnical engineering |
en |
dc.title |
Simulating the seismic response of an embankment using soft computing techniques |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Geotechnical earthquake engineering can generally be considered as an ""imprecise"" area due to the unavoidable uncertainties and simplifications. Therefore, relatively accurate predictions, using advanced Soft Computing (SC) techniques, can be tolerated rather than solving a problem conventionally. Artificial Neural Networks (ANNs), being one of the most popular SC techniques, have been used in many fields of science and technology, as well as, an increasing number of problems in engineering. In the present study the application of ANNs is focused on the simulation of the seismic response of an embankment. Typically, the dynamic response of an embankment is evaluated utilizing the finite-element method, where nonlinearity of geo-materials can be taken into account by an equivalent-linear procedure. This extremely time-consuming process is replaced by properly trained ANNs. © 2006 Taylor & Francis Group. |
en |
heal.journalName |
Proceedings of the 6th European Conference on Numerical Methods in Geotechnical Engineering - Numerical Methods in Geotechnical Engineering |
en |
dc.identifier.spage |
663 |
en |
dc.identifier.epage |
669 |
en |