heal.abstract |
A method allowing the evaluation of the effects related to heat transfer to the turbine blades on its performance characteristics is presented. The effects investigated are the change of passage dimensions, resulting from heat transfer and the change in flow field, exhibited mainly as a different boundary layer development. Change of hot gas temperature combined with cooling air temperature and possibly flow rate, result in a change of the temperature of the blade material, leading to dimension changes, because of the thermal expansion (dilatation). The changes in dimensions have a direct effect on turbine performance. An immediate consequence is a modification of the mass flow characteristic, due to a change of the throat area. Heat transfer also influences the properties of the gas flowing through the passage and in particular the characteristics of the boundary layers developing on the nozzle vanes and hub, tip endwals. Change of the thickness of this layer results in a change of blockage through the passage, a fact that influences directly the turbine flow function. The influence of both effects on turbine performance is studied. The study is performance oriented, aiming to the derivation of simplified models, which can be introduced in engine cycle decks Copyright © 2006 by ASME. |
en |