HEAL DSpace

The meshless analog equation method: A new highly accurate truly mesh-free method for solving partial differential equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T02:50:54Z
dc.date.available 2014-03-01T02:50:54Z
dc.date.issued 2006 en
dc.identifier.issn 1743355X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35199
dc.subject.other Integration en
dc.subject.other Linear equations en
dc.subject.other Matrix algebra en
dc.subject.other Mesh generation en
dc.subject.other Optimal systems en
dc.subject.other Problem solving en
dc.subject.other Analog equation en
dc.subject.other Expansion coefficients en
dc.subject.other Meshless analog equation method (MAEM) en
dc.subject.other Nodal points en
dc.subject.other Partial differential equations en
dc.title The meshless analog equation method: A new highly accurate truly mesh-free method for solving partial differential equations en
heal.type conferenceItem en
heal.identifier.primary 10.2495/BE06002 en
heal.identifier.secondary http://dx.doi.org/10.2495/BE06002 en
heal.publicationDate 2006 en
heal.abstract A new purely meshless method to solve PDEs is presented. The method is based on the concept of the analog equation of Katsikadelis, hence its name meshless analog equation method (MAEM), which converts the original equation into a simple solvable substitute one of the same order under a fictitious source. The fictitious source is represented by MQ-RBFS. Integration of the analog equation allows the approximation of the sought solution by new RBFs. Then inserting the solution into the PDE and BCs and collocating at the mesh-free nodal points yields a system of linear equations, which permit the evaluation of the expansion coefficients. The method exhibits key advantages of over other RBF collocation methods as it is highly accurate and the matrix of the resulting linear equations is always invertible. The accuracy is increased using optimal values of the shape parameters of the multiquadrics by minimizing the potential that produces the PDE. Without restricting its generality, the method is illustrated by applying it to the general second order elliptic PDE. The studied examples demonstrate the efficiency and high accuracy of the developed method. en
heal.journalName WIT Transactions on Modelling and Simulation en
dc.identifier.doi 10.2495/BE06002 en
dc.identifier.volume 42 en
dc.identifier.spage 13 en
dc.identifier.epage 22 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής