HEAL DSpace

Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kerschen, G en
dc.contributor.author Vakakis, AF en
dc.contributor.author Lee, YS en
dc.contributor.author McFarland, DM en
dc.contributor.author Bergman, LA en
dc.date.accessioned 2014-03-01T02:50:55Z
dc.date.available 2014-03-01T02:50:55Z
dc.date.issued 2006 en
dc.identifier.issn 21915644 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35208
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-84861536498&partnerID=40&md5=04eee6dddbcc4fdb992e78b405ec6595 en
dc.subject.other Analytical results en
dc.subject.other Elemental components en
dc.subject.other Empirical Mode Decomposition en
dc.subject.other Experimental measurements en
dc.subject.other Fast dynamics en
dc.subject.other Hilbert Huang transforms en
dc.subject.other Hilbert transform en
dc.subject.other Model identification en
dc.subject.other Non-linear system identification en
dc.subject.other Nonlinear structural dynamics en
dc.subject.other Nonstationary signals en
dc.subject.other Numerical example en
dc.subject.other Strongly nonlinear system en
dc.subject.other Dynamical systems en
dc.subject.other Exhibitions en
dc.subject.other Nonlinear systems en
dc.subject.other Structural dynamics en
dc.subject.other Signal processing en
dc.title Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract The Hilbert-Huang transform (HHT) has been shown to be effective for characterizing a wide range of nonstationary signals in terms of elemental components through what has been called the empirical mode decomposition. The HHT has been utilized extensively despite the absence of a serious analytical foundation, as it provides a concise basis for the analysis of strongly nonlinear systems. In this paper, we attempt to provide the missing link, showing the relationship between the EMD and the slow-flow equations of the system. The slow-flow model is established by performing a partition between slow and fast dynamics using the complexification-averaging technique, and a dynamical system described by slowly-varying amplitudes and phases is obtained. These variables can also be extracted directly from the experimental measurements using the Hilbert transform coupled with the EMD. The comparison between the experimental and analytical results forms the basis of a nonlinear system identification method, termed the slow-flow model identification method, which is demonstrated using numerical examples. en
heal.journalName Conference Proceedings of the Society for Experimental Mechanics Series en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής