dc.contributor.author |
Chatzis, S |
en |
dc.contributor.author |
Varvarigou, T |
en |
dc.date.accessioned |
2014-03-01T02:50:56Z |
|
dc.date.available |
2014-03-01T02:50:56Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35224 |
|
dc.subject |
Gaussian Mixture Model |
en |
dc.subject |
Heavy Tail |
en |
dc.subject |
Mixture Model |
en |
dc.subject |
Pattern Recognition |
en |
dc.subject |
Speaker Identification |
en |
dc.subject |
Speaker Recognition |
en |
dc.subject |
Hidden Markov Chain |
en |
dc.subject |
Hidden Markov Model |
en |
dc.title |
A Robust to Outliers Hidden Markov Model with Application in Text-Dependent Speaker Identification |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICSPC.2007.4728441 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICSPC.2007.4728441 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Hidden Markov models using Gaussian mixture models as their hidden state distributions have been successfully applied in text-dependent speaker identification applications. Nevertheless, it is well-known that Gaussian mixture models are very vulnerable to the presence of outliers in the fitting set used for their estimation. Student's-t mixture models have been proposed recently as a heavy-tailed, tolerant to outliers alternative to |
en |
heal.journalName |
IEEE International Conference on Signal Processing and Communications |
en |
dc.identifier.doi |
10.1109/ICSPC.2007.4728441 |
en |