dc.contributor.author |
Floudas, N |
en |
dc.contributor.author |
Polychronopoulos, A |
en |
dc.contributor.author |
Aycard, O |
en |
dc.contributor.author |
Burlet, J |
en |
dc.contributor.author |
Ahrholdt, M |
en |
dc.date.accessioned |
2014-03-01T02:50:58Z |
|
dc.date.available |
2014-03-01T02:50:58Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35255 |
|
dc.subject |
Data Association |
en |
dc.subject |
multi-sensor data fusion |
en |
dc.subject |
Object Recognition |
en |
dc.subject |
Sensor Data Fusion |
en |
dc.subject |
Sensor Network |
en |
dc.subject |
Data Fusion |
en |
dc.subject |
Field of View |
en |
dc.subject |
Point To Point |
en |
dc.title |
High Level Sensor Data Fusion Approaches For Object Recognition In Road Environment |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IVS.2007.4290104 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IVS.2007.4290104 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Application of high level fusion approaches demonstrate a sequence of significant advantages in multi sensor data fusion and automotive safety fusion systems are no exception to this. High level fusion can be applied to automotive sensor networks with complementary or/and redundant field of views. The advantage of this approach is that it ensures system modularity and allows benchmarking, as it |
en |
heal.journalName |
Intelligent Vehicle, IEEE Symposium |
en |
dc.identifier.doi |
10.1109/IVS.2007.4290104 |
en |