dc.contributor.author |
Rapantzikos, K |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:50:59Z |
|
dc.date.available |
2014-03-01T02:50:59Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35274 |
|
dc.subject |
image denoising |
en |
dc.subject |
Indexing Terms |
en |
dc.subject |
Visual Quality |
en |
dc.subject |
Wavelet Shrinkage |
en |
dc.subject |
Wavelet Transform |
en |
dc.title |
salienShrink: Saliency-Based Wavelet Shrinkage |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.2007.4378952 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.2007.4378952 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
This paper describes salienShrink, a method to denoise images based on computing a map of salient coefficients in the wavelet domain and use it to improve common denoising algorithms. By salient, we refer to those coefficients that correspond mostly to pure signal and should therefore be preserved throughout the denoising procedure. We use a computationally efficient model to detect salient |
en |
heal.journalName |
Image Processing, IEEE International Conference |
en |
dc.identifier.doi |
10.1109/ICIP.2007.4378952 |
en |