dc.contributor.author |
Karame, G |
en |
dc.contributor.author |
Stergiou, A |
en |
dc.contributor.author |
Katsarakis, N |
en |
dc.contributor.author |
Papageorgiou, P |
en |
dc.contributor.author |
Pnevmatikakis, A |
en |
dc.date.accessioned |
2014-03-01T02:51:00Z |
|
dc.date.available |
2014-03-01T02:51:00Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35288 |
|
dc.subject.other |
Cameras |
en |
dc.subject.other |
Computer networks |
en |
dc.subject.other |
Face recognition |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
Stochastic programming |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
(algorithmic) complexity |
en |
dc.subject.other |
3D faces |
en |
dc.subject.other |
3D scenes |
en |
dc.subject.other |
camera view |
en |
dc.subject.other |
Complex scenes |
en |
dc.subject.other |
Existing systems |
en |
dc.subject.other |
Face localization |
en |
dc.subject.other |
Face tracking |
en |
dc.subject.other |
far fields |
en |
dc.subject.other |
Gaussian mixture model (GMM) |
en |
dc.subject.other |
Multiple people |
en |
dc.subject.other |
Security systems |
en |
dc.title |
2D and 3D face localization for complex scenes |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/AVSS.2007.4425339 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/AVSS.2007.4425339 |
en |
heal.identifier.secondary |
4425339 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper, we address face tracking of multiple people in complex 3D scenes, using multiple calibrated and synchronized far-field recordings. We localize faces in every camera view and associate them across the different views. To cope with the complexity of 2D face localization introduced by the multitude of people and unconstrained face poses, a combination of stochastic and deterministic trackers, detectors and a Gaussian Mixture Model for face validation are utilized. Then faces of the same person seen from the different cameras are associated by first finding all possible associations and then choosing the best option by means of a 3D stochastic tracker. The performance of the proposed system is evaluated and is found enhanced compared to existing systems. © 2007 IEEE. |
en |
heal.journalName |
2007 IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2007 Proceedings |
en |
dc.identifier.doi |
10.1109/AVSS.2007.4425339 |
en |
dc.identifier.spage |
371 |
en |
dc.identifier.epage |
376 |
en |