HEAL DSpace

A Bayesian duration estimation of crack initiation prediction in in-service pavements

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karlaftis, MG en
dc.contributor.author Loizos, A en
dc.date.accessioned 2014-03-01T02:51:00Z
dc.date.available 2014-03-01T02:51:00Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35290
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-84858031634&partnerID=40&md5=7071cc32533be7a21d7f764d0974a50e en
dc.subject.other Bayesian inference en
dc.subject.other Climatic factors en
dc.subject.other Duration models en
dc.subject.other Estimated parameter en
dc.subject.other European Countries en
dc.subject.other Functional forms en
dc.subject.other Log-logistic en
dc.subject.other Mechanistic models en
dc.subject.other Mechanistic-empirical model en
dc.subject.other Model specifications en
dc.subject.other Parameter uncertainty en
dc.subject.other Pavement distress en
dc.subject.other Pavement engineering en
dc.subject.other Statistical models en
dc.subject.other Bayesian networks en
dc.subject.other Estimation en
dc.subject.other Highway engineering en
dc.subject.other Inference engines en
dc.subject.other Soil mechanics en
dc.subject.other Stochastic models en
dc.subject.other Pavements en
dc.title A Bayesian duration estimation of crack initiation prediction in in-service pavements en
heal.type conferenceItem en
heal.publicationDate 2007 en
heal.abstract Research has recently concentrated on modeling and predicting pavement distress and deterioration; this research has, almost exclusively, revolved around mechanistic-empirical models that place restrictions on estimated parameters compromising performance. Recent computational advances enable the estimation of complex and computationally cumbersome statistical models with two very attractive properties: i. they are based on explicit mechanistic models that stem directly from pavement engineering practice, and ii. estimation and interpretation is straightforward, transparent, and tractable. We address here the problem of pavement failure times on the basis of data collected from in-service pavements in 15 European countries using Bayesian stochastic duration models that account for both parameter uncertainty and model specification uncertainty. Results indicate that, as expected, construction, traffic and climatic factors affect pavement distress; further, the loglogistic functional form estimated via the Bayesian Inference we propose, describes distress initiation better than existing approaches. © 2007 Taylor & Francis Group, London. en
heal.journalName Advanced Characterisation of Pavement and Soil Engineering Materials - Proceedings of the International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials en
dc.identifier.volume 2 en
dc.identifier.spage 1209 en
dc.identifier.epage 1220 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής