HEAL DSpace

A phase-resolving, coupled-mode model for wave-current-seabed interaction over steep 3D bottom topography. Parallel architecture implementation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Belibassakis, KA en
dc.contributor.author Gerostathis, TP en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T02:51:01Z
dc.date.available 2014-03-01T02:51:01Z
dc.date.issued 2007 en
dc.identifier.issn 10986189 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35299
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-36448952700&partnerID=40&md5=85458b8a9e99ea7a098f6b2e584366b8 en
dc.subject Couple-mode theory en
dc.subject Modified mild slope en
dc.subject Non-homogeneous currents en
dc.subject Variable bathymetry en
dc.subject Water waves en
dc.subject.other Boundary conditions en
dc.subject.other Message passing en
dc.subject.other Scattering en
dc.subject.other Sea level en
dc.subject.other Steady flow en
dc.subject.other Topography en
dc.subject.other Wave propagation en
dc.subject.other Couple-mode theory en
dc.subject.other Modified mild slope en
dc.subject.other Non-homogeneous currents en
dc.subject.other Variable bathymetry en
dc.subject.other Water waves en
dc.title A phase-resolving, coupled-mode model for wave-current-seabed interaction over steep 3D bottom topography. Parallel architecture implementation en
heal.type conferenceItem en
heal.publicationDate 2007 en
heal.abstract A phase-resolving, coupled-mode model is developed for the wave-current-seabed interaction problem, with application to wave scattering by steady currents over steep three-dimensional bottom topography. The vertical distribution of the wave potential is represented by a series of local vertical modes containing the propagating mode and all evanescent modes, plus an additional term accounting for the bottom boundary condition when the bottom slope is not negligible. Using the above representation, in conjunction with a variational principle, the problem is reduced to a coupled system of differential equations on the horizontal plane. If only the propagating mode is retained in the vertical expansion of the wave potential, and after additional simplifications, the above coupled-mode system is reduced to the mild-slope model derived by Kirby (1984) with application to the problem of wave-current interaction over slowly varying topography. The present system is discretized by using a second-order finite difference scheme and numerically solved by means of a parallel implementation, developed using the message passing programming paradigm on a commodity computer cluster. Thus, direct numerical solution is made feasible for realistic domains corresponding to areas with size of the order of several kilometers. The analytical structure of the present model facilitates its extension to treat non-linear waves, and it can be further elaborated to study wave propagation over random bottom topography and currents. Copyright © 2007 by The International Society of Offshore and Polar Engineers(ISOPE). en
heal.journalName Proceedings of the International Offshore and Polar Engineering Conference en
dc.identifier.spage 2246 en
dc.identifier.epage 2253 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής