dc.contributor.author |
Lenis, A |
en |
dc.contributor.author |
Chatzigiannakis, V |
en |
dc.contributor.author |
Grammatikou, M |
en |
dc.contributor.author |
Papavassiliou, S |
en |
dc.date.accessioned |
2014-03-01T02:51:02Z |
|
dc.date.available |
2014-03-01T02:51:02Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35315 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-70450239471&partnerID=40&md5=d1f686cc3c58bb72faaf7a24ae26afed |
en |
dc.subject |
Data fusion |
en |
dc.subject |
Incident detection |
en |
dc.subject |
Sensor grids |
en |
dc.subject |
Vehicular network monitoring |
en |
dc.subject.other |
Architectural frameworks |
en |
dc.subject.other |
Combined effect |
en |
dc.subject.other |
Decision supports |
en |
dc.subject.other |
Fusion algorithms |
en |
dc.subject.other |
Heterogeneous sensors |
en |
dc.subject.other |
Incident detection |
en |
dc.subject.other |
Mobile sensors |
en |
dc.subject.other |
Modeling and simulation |
en |
dc.subject.other |
Observed data |
en |
dc.subject.other |
Operational effectiveness |
en |
dc.subject.other |
Road traffic incidents |
en |
dc.subject.other |
Sensor grids |
en |
dc.subject.other |
Vehicular networks |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Decision support systems |
en |
dc.subject.other |
Highway traffic control |
en |
dc.subject.other |
Information fusion |
en |
dc.subject.other |
Intelligent vehicle highway systems |
en |
dc.subject.other |
Principal component analysis |
en |
dc.subject.other |
Sensor networks |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Vehicle locating systems |
en |
dc.subject.other |
Wireless networks |
en |
dc.subject.other |
Sensor data fusion |
en |
dc.title |
An architectural framework for the support of intelligent vehicular network monitoring |
en |
heal.type |
conferenceItem |
en |
heal.identifier.secondary |
2 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper we propose an efficient, scalable and secure architectural framework for the monitoring of multiple fixed and mobile sensors, designed for road traffic incident detection. The Grid provides the means to control the sensors and gather information with security and reliability. The system includes a Decision Support Service that fuses multi-metric data from heterogeneous sensors to produce a global and comprehensive view of the vehicular network state. The adopted fusion algorithm is based on the application of Principal Component Analysis on multi-metric data, and provides an efficient way of taking into account the combined effect of the correlated observed data, for incident detection purposes. Finally, the performance and operational effectiveness of the proposed approach and system is evaluated via modeling and simulation. Copyright 2007 ACM. |
en |
heal.journalName |
1st International Workshop on Wireless Networking for Intelligent Transportation Systems, WINITS '07 |
en |