dc.contributor.author |
Loizos, A |
en |
dc.contributor.author |
Georgiou, P |
en |
dc.contributor.author |
Plati, C |
en |
dc.date.accessioned |
2014-03-01T02:51:03Z |
|
dc.date.available |
2014-03-01T02:51:03Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35321 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-74049153553&partnerID=40&md5=896ea134bb620b21baa33eb26483ddbd |
en |
dc.subject.other |
Computational technique |
en |
dc.subject.other |
Computational tools |
en |
dc.subject.other |
Developed model |
en |
dc.subject.other |
Environmental aspects |
en |
dc.subject.other |
Falling weight deflectometer (FWD) |
en |
dc.subject.other |
Field data |
en |
dc.subject.other |
Ground penetrating radar (GPR) |
en |
dc.subject.other |
Highway networks |
en |
dc.subject.other |
Mechanical characteristics |
en |
dc.subject.other |
Pavement material |
en |
dc.subject.other |
Real-time data |
en |
dc.subject.other |
Remaining life |
en |
dc.subject.other |
Road section |
en |
dc.subject.other |
Traffic loads |
en |
dc.subject.other |
Ground penetrating radar systems |
en |
dc.subject.other |
Highway engineering |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Soil mechanics |
en |
dc.title |
Assessment of asphalt pavement remaining life using artificial neural network modelling |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The pavement remaining life (RL) is mainly dependent on pavement materials and mechanical characteristics, traffic load and several environmental aspects. The optimum evaluation of such parameters is more than demanding for pavement engineers. In light of the above the present research work focuses on the evaluation of Asphalt Concrete (AC) layers stiffness using the Artificial Neural Networks (ANN) computational technique. Thus an ANN model is developed based on field data, which is gathered non-destructively from representative road sections of the Greek highway network using Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR) measurements. The developed model, which successfully predicts AC layer stiffness, proves to be an attractive computational tool for rapidly analyzing real time data. © 2007 Taylor & Francis Group, London. |
en |
heal.journalName |
Advanced Characterisation of Pavement and Soil Engineering Materials - Proceedings of the International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
993 |
en |
dc.identifier.epage |
1002 |
en |