HEAL DSpace

Detection of gas turbines malfunctions from emission concentration distributions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Romessis, C en
dc.contributor.author Mathioudakis, K en
dc.date.accessioned 2014-03-01T02:51:04Z
dc.date.available 2014-03-01T02:51:04Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35340
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-34548726860&partnerID=40&md5=9c53183827cab802892abd33b158e603 en
dc.subject.other Defects en
dc.subject.other Exhaust gases en
dc.subject.other Fault detection en
dc.subject.other Industrial emissions en
dc.subject.other Neural networks en
dc.subject.other Turbofan engines en
dc.subject.other Diagnostic procedures en
dc.subject.other Engine emissions en
dc.subject.other Malfunctions en
dc.subject.other Probabilistic classifiers en
dc.subject.other Gas turbines en
dc.title Detection of gas turbines malfunctions from emission concentration distributions en
heal.type conferenceItem en
heal.publicationDate 2007 en
heal.abstract A method for detecting gas turbines malfunctions through engine emissions concentration plots is presented. The method is materialized through the use of a bank of Probabilistic Neural Networks (PNNs). The main idea comes from the fact that specific operating and health conditions of an engine lead to specific concentrations of emissions on the exhaust area. By comparison of an emission concentration plot with emission plots of known engine health conditions, diagnostic conclusions can be extracted. The stochastic nature of emission concentrations can be handled by PNNs, a specific type of Artificial Neural Networks which are known to be efficient probabilistic classifiers. The diagnostic problem and the overall diagnostic procedure are first described. A detailed description of the way the diagnostic procedure is set-up, with focus on building the PNNs, follows. The case of an operating family of turbofan engines is used to evaluate the effectiveness of the method. The examined case demonstrates that the proposed method can act as an additional tool on the existing methods for better and safer fault diagnosis. Copyright © 2007 by ASME. en
heal.journalName Proceedings of the ASME Turbo Expo en
dc.identifier.volume 1 en
dc.identifier.spage 515 en
dc.identifier.epage 522 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής