HEAL DSpace

Nonlinear modeling of glucose metabolism: Comparison of parametric vs. nonparametric methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsis, GD en
dc.contributor.author Marmarelis, VZ en
dc.date.accessioned 2014-03-01T02:51:08Z
dc.date.available 2014-03-01T02:51:08Z
dc.date.issued 2007 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35390
dc.subject.other Computational methods en
dc.subject.other Computer simulation en
dc.subject.other Constraint theory en
dc.subject.other Metabolism en
dc.subject.other Parameter estimation en
dc.subject.other Data guide en
dc.subject.other Inductive selection en
dc.subject.other Nonparametric models en
dc.subject.other Glucose en
dc.title Nonlinear modeling of glucose metabolism: Comparison of parametric vs. nonparametric methods en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2007.4353707 en
heal.identifier.secondary 4353707 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2007.4353707 en
heal.publicationDate 2007 en
heal.abstract This paper presents the results of computational studies that compare simulated parametric and nonparametric models in terms of their ability to obtain reliable quantitative descriptions of the dynamic effects of variable infusions of insulin on blood glucose concentration in human subjects. In the nonparametric modeling approach, we employ the general class of Volterra-type models that are estimated from input-output data. The parametric models considered are the extensively studied ""minimal model"" and an augmented variant of the latter that incorporates the process of insulin secretion by the pancreas in response to elevated blood glucose. This model represents the actual closed-loop operating conditions of the system. The presented results demonstrate the feasibility of obtaining data-driven (i.e. inductive) nonparametric models in a realistic operating context, without resorting to the restrictive prior assumptions of model structure that are necessary for the numerous parametric (compartmental) models proposed previously. The rationale underpinning the nonparametric approach is that prior assumptions regarding the model structure may lead to results that are improperly constrained or biased by preconceived notions. Thus, it may be preferable to let the data guide the inductive selection of the appropriate model within the general class of Volterra-type models that imposes no such constraints. © 2007 IEEE. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2007.4353707 en
dc.identifier.spage 5967 en
dc.identifier.epage 5970 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής