HEAL DSpace

The slow-flow method of identification in nonlinear structural dynamics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kerschen, G en
dc.contributor.author Vakakis, AF en
dc.contributor.author Lee, YS en
dc.contributor.author McFarland, DM en
dc.contributor.author Bergman, LA en
dc.date.accessioned 2014-03-01T02:51:17Z
dc.date.available 2014-03-01T02:51:17Z
dc.date.issued 2007 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35441
dc.subject Complexification-averaging en
dc.subject Hilbert-Huang transform en
dc.subject Nonlinear system identification en
dc.subject Slow flow en
dc.subject.other Complexification averaging en
dc.subject.other Empirical mode decomposition en
dc.subject.other Hilbert-Huang transforms (HHT) en
dc.subject.other Slow flow en
dc.subject.other Identification (control systems) en
dc.subject.other Mathematical models en
dc.subject.other Structural dynamics en
dc.subject.other Nonlinear systems en
dc.title The slow-flow method of identification in nonlinear structural dynamics en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.716823 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.716823 en
heal.identifier.secondary 65291M en
heal.publicationDate 2007 en
heal.abstract The Hilbert-Huang transform (HHT) has been shown to be effective for characterizing a wide range of nonstationary signals in terms of elemental components through what has been called the empirical mode decomposition. The HHT has been utilized extensively despite the absence of a serious analytical foundation, as it provides a concise basis for the analysis of strongly nonlinear systems. In this paper, we attempt to provide the missing link, showing the relationship between the EMD and the slow-flow equations of the system. The slow-flow model is established by performing a partition between slow and fast dynamics using the complexification-averaging technique, and a dynamical system described by slowly-varying amplitudes and phases is obtained. These variables can also be extracted directly from the experimental measurements using the Hilbert transform coupled with the EMD. The comparison between the experimental and analytical results forms the basis of a nonlinear system identification method, termed the slow-flow model identification method, which is demonstrated using numerical examples. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.716823 en
dc.identifier.volume 6529 PART 1 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής