dc.contributor.author |
Zhang, Q |
en |
dc.contributor.author |
Chandramouli, K |
en |
dc.contributor.author |
Damnjanovic, U |
en |
dc.contributor.author |
Piatrik, T |
en |
dc.contributor.author |
Tolias, G |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Kapsalas, P |
en |
dc.contributor.author |
Mylonas, P |
en |
dc.contributor.author |
Spyrou, E |
en |
dc.contributor.author |
Mansencal, B |
en |
dc.contributor.author |
Benois-pineau, J |
en |
dc.contributor.author |
Saracoglu, A |
en |
dc.contributor.author |
Esen, E |
en |
dc.contributor.author |
Alatan, A |
en |
dc.contributor.author |
Aginako, N |
en |
dc.contributor.author |
Garcia, I |
en |
dc.contributor.author |
Pinheiro, A |
en |
dc.contributor.author |
Alexandre, L |
en |
dc.contributor.author |
Corvaglia, M |
en |
dc.contributor.author |
Guerrini, F |
en |
dc.contributor.author |
Migliorati, P |
en |
dc.contributor.author |
Fatemi, N |
en |
dc.contributor.author |
Poulin, F |
en |
dc.contributor.author |
Raileanu, L |
en |
dc.contributor.author |
Jarina, R |
en |
dc.contributor.author |
Paralic, M |
en |
dc.contributor.author |
Vrochidis, S |
en |
dc.contributor.author |
Moumtzidou, A |
en |
dc.contributor.author |
King, P |
en |
dc.contributor.author |
Nikolopoulos, S |
en |
dc.contributor.author |
Dimou, A |
en |
dc.contributor.author |
Mezaris, V |
en |
dc.contributor.author |
Makris, L |
en |
dc.contributor.author |
Kompatsiaris, I |
en |
dc.contributor.author |
Naci, U |
en |
dc.contributor.author |
Hanjalic, A |
en |
dc.date.accessioned |
2014-03-01T02:51:19Z |
|
dc.date.available |
2014-03-01T02:51:19Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35477 |
|
dc.relation.uri |
http://www.informatik.uni-trier.de/~ley/db/conf/trecvid/trecvid2008.html#ZhangCDPTAKMSMBSEAAGPACGMFPRJPVMKNDMMKNH08 |
en |
dc.relation.uri |
http://www-nlpir.nist.gov/projects/tvpubs/tv8.papers/cost292.pdf |
en |
dc.subject |
Ant Colony Optimisation |
en |
dc.subject |
Camera Motion |
en |
dc.subject |
Detection Algorithm |
en |
dc.subject |
Feature Detection |
en |
dc.subject |
Feature Extraction |
en |
dc.subject |
Interactive Search |
en |
dc.subject |
Latent Semantic Analysis |
en |
dc.subject |
Learning Algorithm |
en |
dc.subject |
Particle Swarm Optimisation |
en |
dc.subject |
Semantic Space |
en |
dc.subject |
Spectral Clustering |
en |
dc.subject |
User Interface |
en |
dc.subject |
Neural Network |
en |
dc.title |
COST292 experimental framework for TRECVID2008 |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Abstract In this paper, we give an overview of the four tasks submitted to TRECVID 2008 by COST292. The high-level feature extraction framework comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a multi-modal classifier based on SVMs |
en |
heal.journalName |
TREC Video Retrieval Evaluation |
en |