dc.contributor.author |
Georgiou, V |
en |
dc.contributor.author |
Alevizos, P |
en |
dc.contributor.author |
Vrahatis, M |
en |
dc.date.accessioned |
2014-03-01T02:51:20Z |
|
dc.date.available |
2014-03-01T02:51:20Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35489 |
|
dc.subject |
Benchmark Problem |
en |
dc.subject |
Binary Classification |
en |
dc.subject |
Fuzzy Membership Function |
en |
dc.subject |
Membership Function |
en |
dc.subject |
particle swarm optimizer |
en |
dc.subject |
Probabilistic Neural Network |
en |
dc.subject |
Smoothing Parameter |
en |
dc.subject |
Stochastic Algorithm |
en |
dc.title |
Fuzzy Evolutionary Probabilistic Neural Networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-69939-2_11 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-69939-2_11 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
One of the most frequently used models for classification tasks is the Probabilistic Neural Network. Several improvements of the Probabilistic Neural Network have been proposed such as the Evolutionary Probabilistic Neural Network that employs the Particle Swarm Optimization stochastic algorithm for the proper selection of its spread (smoothing) parameters and the prior probabilities. To further improve its performance, a fuzzy |
en |
heal.journalName |
Artificial Neural Networks in Pattern Recognition |
en |
dc.identifier.doi |
10.1007/978-3-540-69939-2_11 |
en |