dc.contributor.author |
Argyriou, E |
en |
dc.contributor.author |
Bekos, M |
en |
dc.contributor.author |
Kaufmann, M |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:51:30Z |
|
dc.date.available |
2014-03-01T02:51:30Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35526 |
|
dc.subject |
Embedded Graph |
en |
dc.subject |
Polynomial Time Algorithm |
en |
dc.subject |
Public Transport |
en |
dc.title |
Two Polynomial Time Algorithms for the Metro-line Crossing Minimization Problem |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-00219-9_33 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-00219-9_33 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The metro-line crossing minimization (MLCM) problem was re- cently introduced in (5) as a response to the problem of drawing metro maps or public transportation networks, in general. According to this problem, we are given a planar, embedded graph G = (V;E) and a set L of simple paths on G, called lines. The main task is to place the |
en |
heal.journalName |
Symposium on Graph Drawing |
en |
dc.identifier.doi |
10.1007/978-3-642-00219-9_33 |
en |