dc.contributor.author |
Varun |
en |
dc.contributor.author |
Assimaki, D |
en |
dc.contributor.author |
Gazetas, G |
en |
dc.date.accessioned |
2014-03-01T02:51:32Z |
|
dc.date.available |
2014-03-01T02:51:32Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
08950563 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35542 |
|
dc.subject.other |
Associated costs |
en |
dc.subject.other |
Complex stress |
en |
dc.subject.other |
Critical facilities |
en |
dc.subject.other |
Current practices |
en |
dc.subject.other |
Embedded foundation |
en |
dc.subject.other |
Finite element simulations |
en |
dc.subject.other |
Flexible pile |
en |
dc.subject.other |
Frequency dependent |
en |
dc.subject.other |
Linear elastic analysis |
en |
dc.subject.other |
Numerical simulation |
en |
dc.subject.other |
Numerical solution |
en |
dc.subject.other |
Shallow foundations |
en |
dc.subject.other |
Simplified models |
en |
dc.subject.other |
Soil interfaces |
en |
dc.subject.other |
Soil resistance |
en |
dc.subject.other |
Transient response |
en |
dc.subject.other |
Transient systems |
en |
dc.subject.other |
Winkler model |
en |
dc.subject.other |
Aspect ratio |
en |
dc.subject.other |
Machine design |
en |
dc.subject.other |
Simulators |
en |
dc.subject.other |
Soils |
en |
dc.subject.other |
Stress concentration |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Geologic models |
en |
dc.title |
A simplified model for the linear elastic analysis of laterally loaded caissons |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1061/40971(310)2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/40971(310)2 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The transient response of large embedded foundation elements of length-to-diameter aspect ratio D/B=2-6, is characterized by a complex stress distribution at the pier-soil interface that cannot be adequately represented by means of existing models for shallow foundations or flexible piles. While 3D numerical solutions are feasible, they are infrequently employed in practice due to their associated cost and effort. Prompted by the scarcity of simplified models for design in current practice, we here propose a Winkler model that accounts for the multitude of soil resistance mechanisms mobilized at their base and circumference, while retaining the advantages of simplified methodologies for the design of non-critical facilities. The frequency dependent spring functions are developed on the basis of finite element simulations. Numerical simulations for transfer functions and transient system response to vertically propagating shear waves are also successfully compared with the analytically predicted response. Copyright ASCE 2008. |
en |
heal.journalName |
Geotechnical Special Publication |
en |
dc.identifier.doi |
10.1061/40971(310)2 |
en |
dc.identifier.issue |
178 |
en |
dc.identifier.spage |
17 |
en |
dc.identifier.epage |
24 |
en |