HEAL DSpace

A unified coupled-mode approach to nonlinear waves in finite depth potential flow

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanassoulis, GA en
dc.contributor.author Belibassakis, KA en
dc.date.accessioned 2014-03-01T02:51:32Z
dc.date.available 2014-03-01T02:51:32Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35545
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-70349315797&partnerID=40&md5=f504e87e052880379487412754eabcac en
dc.subject.other Bottom topography en
dc.subject.other Cnoidal wave en
dc.subject.other Evanescent mode en
dc.subject.other Experimental data en
dc.subject.other Finite depth en
dc.subject.other Free surfaces en
dc.subject.other Intermediate depths en
dc.subject.other Mode approach en
dc.subject.other Non-linear en
dc.subject.other Non-Linearity en
dc.subject.other Nonlinear water waves en
dc.subject.other Nonlinear waves en
dc.subject.other Numerical investigations en
dc.subject.other Numerical results en
dc.subject.other Numerical solution en
dc.subject.other Second-order stokes en
dc.subject.other Series expansion en
dc.subject.other Shallow-water waves en
dc.subject.other Standard model en
dc.subject.other Traveling wave solution en
dc.subject.other Variable bathymetry en
dc.subject.other Variational principles en
dc.subject.other Vertical structures en
dc.subject.other Water depth en
dc.subject.other Wave potentials en
dc.subject.other Wavefields en
dc.subject.other Arctic engineering en
dc.subject.other Hydrodynamics en
dc.subject.other Mechanics en
dc.subject.other Nonlinear equations en
dc.subject.other Renewable energy resources en
dc.subject.other Technical presentations en
dc.subject.other Variational techniques en
dc.subject.other Wave propagation en
dc.subject.other Water waves en
dc.title A unified coupled-mode approach to nonlinear waves in finite depth potential flow en
heal.type conferenceItem en
heal.publicationDate 2008 en
heal.abstract A non-linear coupled-mode system of horizontal equations is presented, as derived from Luke's (1967) variational principle, which models the evolution of nonlinear water waves in intermediate depth over a general bottom topography. The vertical structure of the wave field is represented by means of a complete local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional terms, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The present coupled-mode system fully accounts for the effects of non-linearity and dispersion, and has the following main features: (i) various standard models of water-wave propagation are recovered by appropriate simplifications, and (ii) it exhibits fast convergenge, and thus, a small number of modes (up to 5) are usually enough for the precise numerical solution, provided that the two new modes (the free-surface and the sloping-bottom ones) are included in the local-mode series. In the present work, the couplcd-mode system is applied to the numerical investigation of families of steady traveling wave solutions in constant depth, corresponding to a wide range of water depths, ranging from intermediate to shallow-water wave conditions and its results are compared vs. Stokes and cnoidal wave theories, respectively. Also, numerical results are presented for waves propagating over variable bathymetry regions and compared with second-order Stokes theory and experimental data. Copyright © 2008 by ASME. en
heal.journalName Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE en
dc.identifier.volume 6 en
dc.identifier.spage 201 en
dc.identifier.epage 208 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής