HEAL DSpace

A weakly nonlinear coupled-mode model for wave-current-seabed interaction over general bottom topography

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Belibassakis, KA en
dc.contributor.author Gerostathis, ThP en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T02:51:33Z
dc.date.available 2014-03-01T02:51:33Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35546
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-77957981381&partnerID=40&md5=a4f9dca015a2561526032f3d91a9c3ce en
dc.subject.other Analytical structure en
dc.subject.other Bottom boundary conditions en
dc.subject.other Bottom topography en
dc.subject.other Coupled systems en
dc.subject.other Evanescent mode en
dc.subject.other Finite difference scheme en
dc.subject.other Horizontal planes en
dc.subject.other Nonlinear waves en
dc.subject.other Numerical results en
dc.subject.other One-equation model en
dc.subject.other Propagating mode en
dc.subject.other Scattered waves en
dc.subject.other Seabed interaction en
dc.subject.other Second orders en
dc.subject.other Steady current en
dc.subject.other Test case en
dc.subject.other Variational principles en
dc.subject.other Vertical distributions en
dc.subject.other Vertical modes en
dc.subject.other Wave current interaction en
dc.subject.other Wave potentials en
dc.subject.other Wave scattering en
dc.subject.other Arctic engineering en
dc.subject.other Boundary conditions en
dc.subject.other Mechanics en
dc.subject.other Ocean engineering en
dc.subject.other Topography en
dc.subject.other Variational techniques en
dc.subject.other Wave propagation en
dc.subject.other Wave equations en
dc.title A weakly nonlinear coupled-mode model for wave-current-seabed interaction over general bottom topography en
heal.type conferenceItem en
heal.publicationDate 2008 en
heal.abstract A weakly nonlinear, coupled-mode model is developed for the wave-current-seabed interaction problem, with application to wave scattering by steady currents over general bottom topography. Based on previous work by the authors (Athanassoulis & Belibassakis [1], Belibassakis et al [2]), the vertical distribution of the scattered wave potential is represented by a series of local vertical modes containing the propagating mode and all evanescent modes, plus an additional term accounting for the bottom boundary condition when the bottom slope is not negligible. Using the above representation, in conjunction with Luke's [3] variational principle, the wave-current-seabed interaction problem is reduced to a coupled system of differential equations on the horizontal plane. If only the propagating mode is retained in the vertical expansion of the wave potential, and after simplifications, the present system is reduced to an one-equation model compatible with Kirby's [4] mild-slope model with application to the problem of wave-current interaction over slowly varying topography. The present coupled-mode system is discretized on the horizontal plane by using a second-order finite difference scheme and numerically solved by iterations. Numerical results are presented for two representative test cases, demonstrating the importance of the first evanescent modes and the sloping-bottom mode. The analytical structure of the present model facilitates its extension to treat fully non-linear waves, and it can be further elaborated to study wave propagation over random bottom topography and general currents. Copyright © 2008 by ASME. en
heal.journalName Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE en
dc.identifier.volume 4 en
dc.identifier.spage 465 en
dc.identifier.epage 473 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής