dc.contributor.author |
Benardos, A |
en |
dc.date.accessioned |
2014-03-01T02:51:33Z |
|
dc.date.available |
2014-03-01T02:51:33Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
17433509 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35556 |
|
dc.subject |
Artificial neural networks |
en |
dc.subject |
TBM performance modelling |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Boring machines (machine tools) |
en |
dc.subject.other |
Earth boring machines |
en |
dc.subject.other |
Network performance |
en |
dc.subject.other |
Tunneling machines |
en |
dc.subject.other |
Tunnels |
en |
dc.subject.other |
Artificial intelligence techniques |
en |
dc.subject.other |
Artificial neural networks |
en |
dc.subject.other |
Consistent performance |
en |
dc.subject.other |
Feed-forward artificial neural networks |
en |
dc.subject.other |
Geotechnical |
en |
dc.subject.other |
TBM performance modelling |
en |
dc.subject.other |
Tunnel boring machines |
en |
dc.subject.other |
Tunnel operations |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
artificial intelligence |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
performance assessment |
en |
dc.subject.other |
TBM |
en |
dc.subject.other |
underground construction |
en |
dc.title |
Artificial intelligence in underground development: A study of TBM performance |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.2495/US080031 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2495/US080031 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Modelling tunnel boring machine (TBM) performance is an important aspect in tunnel operations. The use of artificial intelligence techniques such as artificial neural networks has been recently introduced to this subject and the results from such applications prove their potential in making accurate prognosis. This paper presents a review of feed-forward artificial neural network (ANN) development and furthermore it illustrates their application by the use of two cases studies from Italian and Greek underground projects, where the TBM performance is modelled. The results obtained show that the developed ANNs can efficiently generalise the TBM behaviour in their respective geotechnical environment, having a reliable, effective and consistent performance. |
en |
heal.journalName |
WIT Transactions on the Built Environment |
en |
dc.identifier.doi |
10.2495/US080031 |
en |
dc.identifier.volume |
102 |
en |
dc.identifier.spage |
21 |
en |
dc.identifier.epage |
32 |
en |