HEAL DSpace

Artificial intelligence in underground development: A study of TBM performance

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Benardos, A en
dc.date.accessioned 2014-03-01T02:51:33Z
dc.date.available 2014-03-01T02:51:33Z
dc.date.issued 2008 en
dc.identifier.issn 17433509 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35556
dc.subject Artificial neural networks en
dc.subject TBM performance modelling en
dc.subject.other Artificial intelligence en
dc.subject.other Backpropagation en
dc.subject.other Boring machines (machine tools) en
dc.subject.other Earth boring machines en
dc.subject.other Network performance en
dc.subject.other Tunneling machines en
dc.subject.other Tunnels en
dc.subject.other Artificial intelligence techniques en
dc.subject.other Artificial neural networks en
dc.subject.other Consistent performance en
dc.subject.other Feed-forward artificial neural networks en
dc.subject.other Geotechnical en
dc.subject.other TBM performance modelling en
dc.subject.other Tunnel boring machines en
dc.subject.other Tunnel operations en
dc.subject.other Neural networks en
dc.subject.other artificial intelligence en
dc.subject.other artificial neural network en
dc.subject.other performance assessment en
dc.subject.other TBM en
dc.subject.other underground construction en
dc.title Artificial intelligence in underground development: A study of TBM performance en
heal.type conferenceItem en
heal.identifier.primary 10.2495/US080031 en
heal.identifier.secondary http://dx.doi.org/10.2495/US080031 en
heal.publicationDate 2008 en
heal.abstract Modelling tunnel boring machine (TBM) performance is an important aspect in tunnel operations. The use of artificial intelligence techniques such as artificial neural networks has been recently introduced to this subject and the results from such applications prove their potential in making accurate prognosis. This paper presents a review of feed-forward artificial neural network (ANN) development and furthermore it illustrates their application by the use of two cases studies from Italian and Greek underground projects, where the TBM performance is modelled. The results obtained show that the developed ANNs can efficiently generalise the TBM behaviour in their respective geotechnical environment, having a reliable, effective and consistent performance. en
heal.journalName WIT Transactions on the Built Environment en
dc.identifier.doi 10.2495/US080031 en
dc.identifier.volume 102 en
dc.identifier.spage 21 en
dc.identifier.epage 32 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής