dc.contributor.author | Serafetinides, AA | en |
dc.contributor.author | Makropoulou, M | en |
dc.contributor.author | Drakaki, E | en |
dc.date.accessioned | 2014-03-01T02:51:34Z | |
dc.date.available | 2014-03-01T02:51:34Z | |
dc.date.issued | 2008 | en |
dc.identifier.issn | 0277786X | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/35559 | |
dc.subject.other | Applications | en |
dc.subject.other | Coherent light | en |
dc.subject.other | Diagnostic radiography | en |
dc.subject.other | Electron optics | en |
dc.subject.other | Fluorescence | en |
dc.subject.other | Histology | en |
dc.subject.other | Laser produced plasmas | en |
dc.subject.other | Laser spectroscopy | en |
dc.subject.other | Lasers | en |
dc.subject.other | Optical properties | en |
dc.subject.other | Pathology | en |
dc.subject.other | Quantum electronics | en |
dc.subject.other | Skin | en |
dc.subject.other | Spectroscopic analysis | en |
dc.subject.other | Spectrum analysis | en |
dc.subject.other | Tomography | en |
dc.subject.other | Tumors | en |
dc.subject.other | Autofluorescence | en |
dc.subject.other | Basal cell carcinomas | en |
dc.subject.other | Bio-photonics | en |
dc.subject.other | Excitation sources | en |
dc.subject.other | Human datum | en |
dc.subject.other | Human disease | en |
dc.subject.other | Human skins | en |
dc.subject.other | Human tissues | en |
dc.subject.other | Laser-based techniques | en |
dc.subject.other | Laser-induced fluorescence spectroscopies | en |
dc.subject.other | Light-scattering spectrum | en |
dc.subject.other | Mathematical simulations | en |
dc.subject.other | Medical analysis | en |
dc.subject.other | Monte carlo | en |
dc.subject.other | Multi-layered | en |
dc.subject.other | Nitrogen lasers | en |
dc.subject.other | Non-invasive | en |
dc.subject.other | Normal skins | en |
dc.subject.other | Ocular disease | en |
dc.subject.other | Ocular tissues | en |
dc.subject.other | Optical-coherence tomographies | en |
dc.subject.other | Quantitative analysis | en |
dc.subject.other | Spectroscopy measurements | en |
dc.subject.other | Theoretical results | en |
dc.subject.other | Tissue pathologies | en |
dc.subject.other | Tissue properties | en |
dc.subject.other | Tissue samples | en |
dc.subject.other | Ultra violet excitations | en |
dc.subject.other | Laser excitation | en |
dc.title | Biophotonics in diagnosis and modeling of tissue pathologies | en |
heal.type | conferenceItem | en |
heal.identifier.primary | 10.1117/12.822517 | en |
heal.identifier.secondary | http://dx.doi.org/10.1117/12.822517 | en |
heal.identifier.secondary | 702715 | en |
heal.publicationDate | 2008 | en |
heal.abstract | Biophotonics techniques are applied to several fields in medicine and biology. The laser based techniques, such as the laser induced fluorescence (LIF) spectroscopy and the optical coherence tomography (OCT), are of particular importance in dermatology, where the laser radiation could be directly applied to the tissue target (e.g. skin). In addition, OCT resolves architectural tissue properties that might be useful as tumour discrimination parameters for skin as well as for ocular non-invasive visualization. Skin and ocular tissues are complex multilayered and inhomogeneous organs with spatially varying optical properties. This fact complicates the quantitative analysis of the fluorescence and/or light scattering spectra, even from the same tissue sample. To overcome this problem, mathematical simulation is applied for the investigation of the human tissue optical properties, in the visible/infrared range of the spectrum, resulting in a better discrimination of several tissue pathologies. In this work, we present i) a general view on biophotonics applications in diagnosis of human diseases, ii) some specific results on laser spectroscopy techniques, as LIF measurements, applied in arterial and skin pathologies and iii) some experimental and theoretical results on ocular OCT measurements. Regarding the LIF spectroscopy, we examined the autofluorescence properties of several human skin samples, excised from humans undergoing biopsy examination. A nitrogen laser was used as an excitation source, emitting at 337 nm (ultraviolet excitation). Histopathology examination of the samples was also performed, after the laser spectroscopy measurements and the results from the spectroscopic and medical analysis were compared, to differentiate malignancies, e.g. basal cell carcinoma tissue (BCC), from normal skin tissue. Regarding the OCT technique, we correlated human data, obtained from patients undergoing OCT examination, with Monte Carlo simulated cornea and retina tissues for diagnosis of ocular diseases. © 2008 SPIE. | en |
heal.journalName | Proceedings of SPIE - The International Society for Optical Engineering | en |
dc.identifier.doi | 10.1117/12.822517 | en |
dc.identifier.volume | 7027 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |