HEAL DSpace

Biophotonics in diagnosis and modeling of tissue pathologies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Serafetinides, AA en
dc.contributor.author Makropoulou, M en
dc.contributor.author Drakaki, E en
dc.date.accessioned 2014-03-01T02:51:34Z
dc.date.available 2014-03-01T02:51:34Z
dc.date.issued 2008 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35559
dc.subject.other Applications en
dc.subject.other Coherent light en
dc.subject.other Diagnostic radiography en
dc.subject.other Electron optics en
dc.subject.other Fluorescence en
dc.subject.other Histology en
dc.subject.other Laser produced plasmas en
dc.subject.other Laser spectroscopy en
dc.subject.other Lasers en
dc.subject.other Optical properties en
dc.subject.other Pathology en
dc.subject.other Quantum electronics en
dc.subject.other Skin en
dc.subject.other Spectroscopic analysis en
dc.subject.other Spectrum analysis en
dc.subject.other Tomography en
dc.subject.other Tumors en
dc.subject.other Autofluorescence en
dc.subject.other Basal cell carcinomas en
dc.subject.other Bio-photonics en
dc.subject.other Excitation sources en
dc.subject.other Human datum en
dc.subject.other Human disease en
dc.subject.other Human skins en
dc.subject.other Human tissues en
dc.subject.other Laser-based techniques en
dc.subject.other Laser-induced fluorescence spectroscopies en
dc.subject.other Light-scattering spectrum en
dc.subject.other Mathematical simulations en
dc.subject.other Medical analysis en
dc.subject.other Monte carlo en
dc.subject.other Multi-layered en
dc.subject.other Nitrogen lasers en
dc.subject.other Non-invasive en
dc.subject.other Normal skins en
dc.subject.other Ocular disease en
dc.subject.other Ocular tissues en
dc.subject.other Optical-coherence tomographies en
dc.subject.other Quantitative analysis en
dc.subject.other Spectroscopy measurements en
dc.subject.other Theoretical results en
dc.subject.other Tissue pathologies en
dc.subject.other Tissue properties en
dc.subject.other Tissue samples en
dc.subject.other Ultra violet excitations en
dc.subject.other Laser excitation en
dc.title Biophotonics in diagnosis and modeling of tissue pathologies en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.822517 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.822517 en
heal.identifier.secondary 702715 en
heal.publicationDate 2008 en
heal.abstract Biophotonics techniques are applied to several fields in medicine and biology. The laser based techniques, such as the laser induced fluorescence (LIF) spectroscopy and the optical coherence tomography (OCT), are of particular importance in dermatology, where the laser radiation could be directly applied to the tissue target (e.g. skin). In addition, OCT resolves architectural tissue properties that might be useful as tumour discrimination parameters for skin as well as for ocular non-invasive visualization. Skin and ocular tissues are complex multilayered and inhomogeneous organs with spatially varying optical properties. This fact complicates the quantitative analysis of the fluorescence and/or light scattering spectra, even from the same tissue sample. To overcome this problem, mathematical simulation is applied for the investigation of the human tissue optical properties, in the visible/infrared range of the spectrum, resulting in a better discrimination of several tissue pathologies. In this work, we present i) a general view on biophotonics applications in diagnosis of human diseases, ii) some specific results on laser spectroscopy techniques, as LIF measurements, applied in arterial and skin pathologies and iii) some experimental and theoretical results on ocular OCT measurements. Regarding the LIF spectroscopy, we examined the autofluorescence properties of several human skin samples, excised from humans undergoing biopsy examination. A nitrogen laser was used as an excitation source, emitting at 337 nm (ultraviolet excitation). Histopathology examination of the samples was also performed, after the laser spectroscopy measurements and the results from the spectroscopic and medical analysis were compared, to differentiate malignancies, e.g. basal cell carcinoma tissue (BCC), from normal skin tissue. Regarding the OCT technique, we correlated human data, obtained from patients undergoing OCT examination, with Monte Carlo simulated cornea and retina tissues for diagnosis of ocular diseases. © 2008 SPIE. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.822517 en
dc.identifier.volume 7027 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής