HEAL DSpace

Classification and parametrization of unresolved galaxies with gaia

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsalmantza, P en
dc.contributor.author Kontizas, M en
dc.contributor.author Rocca-Volmerange, B en
dc.contributor.author Bailer-Jones, CAL en
dc.contributor.author Kontizas, E en
dc.contributor.author Bellas-Velidis, I en
dc.contributor.author Korakitis, R en
dc.contributor.author Livanou, E en
dc.contributor.author Dapergolas, A en
dc.contributor.author Vallenari, A en
dc.contributor.author Fioc, M en
dc.date.accessioned 2014-03-01T02:51:34Z
dc.date.available 2014-03-01T02:51:34Z
dc.date.issued 2008 en
dc.identifier.issn 0094243X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35561
dc.subject Classification en
dc.subject Galaxies en
dc.subject Photometry en
dc.subject Spectroscopy en
dc.title Classification and parametrization of unresolved galaxies with gaia en
heal.type conferenceItem en
heal.identifier.primary 10.1063/1.3059019 en
heal.identifier.secondary http://dx.doi.org/10.1063/1.3059019 en
heal.publicationDate 2008 en
heal.abstract The ESA satellite mission Gaia will acquire spectrophotometric observations of several million unresolved galaxies during its five years of operation. Our objective is to design and implement a classification system for these data. For this purpose we need to build a new library of galaxy spectra which covers the necessary parameter space. Using the evolutionary code PÉGASE.2 we have produced a library of 28885 synthetic galaxy spectra at zero redshift covering four general spectral types of galaxies over the wavelength range from 250 to 1050 nm, at a sampling of 1nm or less. The library was also reproduced for 4 random values of redshift in the range of 0-0.2 and it is computed on a random grid of four key astrophysical parameters (3 for SFR and 1 for timescale of the infall of gas). The synthetic library was compared with various photometric and spectroscopic observations (e.g. from SDSS) and found in good agreement with them. Using simulated Gaia photometry of this library we train and test the performance of Support Vector Machine (SVM) classifiers and parametrizers. The first results are promising, indicating that galaxy types can be reliably predicted and several parameters (e.g. redshift, mass to light ratio, present SFR) can be estimated with low bias and variance from Gaia observations. © 2008 American Institute of Physics. en
heal.journalName AIP Conference Proceedings en
dc.identifier.doi 10.1063/1.3059019 en
dc.identifier.volume 1082 en
dc.identifier.spage 111 en
dc.identifier.epage 118 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής