HEAL DSpace

Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gorpas, D en
dc.contributor.author Politopoulos, K en
dc.contributor.author Yova, D en
dc.contributor.author Andersson-Engels, S en
dc.date.accessioned 2014-03-01T02:51:35Z
dc.date.available 2014-03-01T02:51:35Z
dc.date.issued 2008 en
dc.identifier.issn 16057422 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35575
dc.subject diffusion approximation en
dc.subject finite elements method en
dc.subject fluorescence image registration en
dc.subject Fluorescence molecular imaging en
dc.subject image fine-tuning en
dc.subject radiative transfer equation en
dc.subject.other Diffusion approximations en
dc.subject.other finite elements method en
dc.subject.other fluorescence image registration en
dc.subject.other Fluorescence molecular en
dc.subject.other image fine-tuning en
dc.subject.other radiative transfer equation en
dc.subject.other Biomolecules en
dc.subject.other Computer simulation en
dc.subject.other Coupled circuits en
dc.subject.other Data handling en
dc.subject.other Diffusion en
dc.subject.other Finite element method en
dc.subject.other Fluorophores en
dc.subject.other Heat radiation en
dc.subject.other Histology en
dc.subject.other Image registration en
dc.subject.other Inverse problems en
dc.subject.other Mathematical models en
dc.subject.other Medical problems en
dc.subject.other Radiative transfer en
dc.subject.other Tumors en
dc.subject.other Medical imaging en
dc.title Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.762968 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.762968 en
heal.identifier.secondary 68591H en
heal.publicationDate 2008 en
heal.abstract One of the most challenging problems in medical imaging is to ""see"" a tumour embedded into tissue, which is a turbid medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and image fine-tuning techniques. As a forward solver the coupled radiative transfer equation and diffusion approximation model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more accurate convergence. A database is constructed by application of the forward model on virtual tumours with known geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using this information, the coupled radiative transfer equation and diffusion approximation model has the required initial values for a computational reasonable and successful convergence during the image fine-tuning application. © 2008 Copyright SPIE - The International Society for Optical Engineering. en
heal.journalName Progress in Biomedical Optics and Imaging - Proceedings of SPIE en
dc.identifier.doi 10.1117/12.762968 en
dc.identifier.volume 6859 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής