dc.contributor.author |
Gorpas, D |
en |
dc.contributor.author |
Politopoulos, K |
en |
dc.contributor.author |
Yova, D |
en |
dc.contributor.author |
Andersson-Engels, S |
en |
dc.date.accessioned |
2014-03-01T02:51:35Z |
|
dc.date.available |
2014-03-01T02:51:35Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
16057422 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35575 |
|
dc.subject |
diffusion approximation |
en |
dc.subject |
finite elements method |
en |
dc.subject |
fluorescence image registration |
en |
dc.subject |
Fluorescence molecular imaging |
en |
dc.subject |
image fine-tuning |
en |
dc.subject |
radiative transfer equation |
en |
dc.subject.other |
Diffusion approximations |
en |
dc.subject.other |
finite elements method |
en |
dc.subject.other |
fluorescence image registration |
en |
dc.subject.other |
Fluorescence molecular |
en |
dc.subject.other |
image fine-tuning |
en |
dc.subject.other |
radiative transfer equation |
en |
dc.subject.other |
Biomolecules |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Coupled circuits |
en |
dc.subject.other |
Data handling |
en |
dc.subject.other |
Diffusion |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Fluorophores |
en |
dc.subject.other |
Heat radiation |
en |
dc.subject.other |
Histology |
en |
dc.subject.other |
Image registration |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Medical problems |
en |
dc.subject.other |
Radiative transfer |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Medical imaging |
en |
dc.title |
Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1117/12.762968 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1117/12.762968 |
en |
heal.identifier.secondary |
68591H |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
One of the most challenging problems in medical imaging is to ""see"" a tumour embedded into tissue, which is a turbid medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and image fine-tuning techniques. As a forward solver the coupled radiative transfer equation and diffusion approximation model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more accurate convergence. A database is constructed by application of the forward model on virtual tumours with known geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using this information, the coupled radiative transfer equation and diffusion approximation model has the required initial values for a computational reasonable and successful convergence during the image fine-tuning application. © 2008 Copyright SPIE - The International Society for Optical Engineering. |
en |
heal.journalName |
Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
en |
dc.identifier.doi |
10.1117/12.762968 |
en |
dc.identifier.volume |
6859 |
en |